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Abstract

Spatiotemporal patterns of vegetation are a characteristic feature of dry-

land ecosystems occurring on all continents except Antarctica. The devel-

opment of an understanding of their ecosystem dynamics is an issue of con-

siderable socio-economic importance as both the livestock and agricultural

sectors in dryland economies heavily depend on ecosystem functioning. Math-

ematical modelling is a powerful tool to disentangle the complex ecosystem

dynamics. In this thesis, I present theoretical models to explore the impact

of nonlocal seed dispersal and temporal precipitation variability on dryland

vegetation patterns and propose several mechanisms that enable species co-

existence within vegetation patterns. To do so, I present extensions of the

Klausmeier reaction-advection-diffusion model, a well-established model de-

scribing the ecohydrological dynamics of vegetation patterns. Model analyses

focus on pattern onset at high precipitation values (i.e. on the transition from

uniformly vegetated to spatially patterned states) to assess the impact of non-

local seed dispersal and precipitation seasonality and intermittency, and on

comprehensive bifurcation analyses, including results on pattern existence and

stability to investigate coexistence of species in the mathematical framework.

Results include the inhibition of pattern onset due to long-range seed dispersal

and put emphasis on the functional response of plants to low soil moisture

levels to understand effects of rainfall intermittency. Moreover, results sug-

gest that coexistence is facilitated by resource heterogeneities induced by the

plant’s spatial self-organisation and highlight the importance of considering

out-of-equilibrium solutions.
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Chapter 1

Introduction

The content of this thesis is centred around the general topic of Modelling dryland

vegetation patterns, a research theme that has received significant attention from

mathematical modellers and theoretical ecologists over the last three decades. In

this introduction, I set the scene for the presentation of the research papers in

Chapters 2 to 8 by providing an overview of ecological processes that characterise

dryland ecosystems as well as by presenting the mathematical framework on which

the content of this thesis is based.

1.1 Ecological background

More than 2.5 billion people live in drylands covering approximately 41% of the

Earth’s land mass [162]. A ubiquitous feature of many drylands is spatiotemporal

patterns of vegetation, characterised by alternating patches of high biomass and

patches of bare soil (Fig. 1.1) [222]. First documented through aerial photography

in the 1940s [116], observations of vegetation patterns have been reported from all

continents except Antarctica (see [71, 222] for reviews). This includes patterns in

the African Sahel [48] and the Horn of Africa [79], Western Australia [72], Chile

[68], Israel [182], the Chihuahuan Desert in the US and Mexico [48] and Spain [108].

The development of a understanding of ecosystem dynamics in drylands is there-

fore of crucial global socio-economic importance. In particular, many economies in

drylands rely on the livestock and agriculture sectors [51, 219], whose developments

are affected by future vegetation levels. For example, in Chad, the livestock sec-

tor contributes around 20% of the country’s GPD and involves about 40% of its

population.

Vegetation patterns are a classical example of a self-organisation principle in

ecology. The separation of plants into patches of dense biomass and areas of bare

soil is induced by a positive feedback between local vegetation growth and water

redistribution towards areas of high biomass [166]. Depending on soil properties

and plant species, a number of different mechanisms are involved in this pattern-

inducing feedback loop. For example, overland water flow towards dense biomass

1



Chapter 1: Introduction

Figure 1.1: Vegetation bands in
Somalia. A satellite image of a banded
vegetation pattern in the Horn of Africa
(7◦50′ N, 47◦4′ E) is shown. It visualises
the characteristic separation of plants
into stripes of high biomass and bands of
bare soil in between. The photograph,
taken in 2013, has been obtained from
Google Earth. Image c© Maxar Techno-
logies.

Figure 1.2: Uphill migration of veget-
ation stripes. Shortly after a precipit-
ation event, the upslope region of the
depicted vegetation band receives more
water run-off from the upslope interband
region than the downslope areas. Ter-
rain elevation increases to the left of the
figure. The photograph shows a vegeta-
tion pattern in New South Wales, Aus-
tralia and is reproduced with permission
from [54].

patches is induced by the formation of infiltration-inhibiting biogenic soil crusts on

certain soil types; or laterally extended root systems as well as a combination of

vertically extended roots and a soil type supporting fast water diffusion can cause

water redistribution below ground [130]. As a consequence, vegetated patches act

as resource sinks, which drives further plant growth and closes the feedback loop.

The self-organisation of plants can result in patterns of different shapes, includ-

ing gap patterns, labyrinth patterns and spot patterns [129]. On gentle slopes (up

to approximately 2% gradient), vegetation patterns occur as regular stripes parallel

to the contours of the terrain [222]. A characteristic feature of regular vegetation

bands is their uphill migration over a generational timescale (i.e. of the order of a few

decimetres per year) [48, 222]. This property emerges from the positive feedback

between local vegetation growth and water redistribution towards dense biomass

patches. Due to the sloped terrain, the uphill edges of vegetation stripes profit

most from this water redistribution, intercepting most of the water run-off from the

upslope interband region (Fig. 1.2). The resulting hydrological distribution pro-

motes upslope expansion and downslope contraction of the bands [48]. However,

evidence of uphill migration is not unequivocal. Reports of stationary vegetation

bands suggest that other processes, such as soil erosion, can counteract uphill mi-

gration [55].

Due to the long temporal and large spatial scales involved in the ecohydrological

dynamics of vegetation patterns, the acquisition of high-quality empirical data is

2



Chapter 1: Introduction

notoriously difficult. While it is possible to obtain data on some properties, including

pattern wavelength [48], terrain elevation [202] and historical rainfall data [193], I

am not aware of methods that enable the collection of other relevant types of data,

such as biomass densities or species composition, over long periods of time and wide

areas of space. In isolation, datasets that are currently available can only provide

limited information on the complex ecosystem dynamics. Nevertheless, empirical

data can be used to complement and test hypotheses from mathematical models

(e.g. [10, 72, 193]).

In this thesis, I focus on a number of different processes and phenomena affecting

the ecosystem dynamics of dryland vegetation patterns: nonlocal dispersal of seeds

(Chapter 2), temporal variability in precipitation (Chapters 3 and 4) and species

coexistence (Chapters 5 to 8).

Dispersal behaviour has a key impact on ecosystem dynamics, including those

in patterned vegetation [25]. Plant dispersal is considered to be a nonlocal process

and is commonly quantified through dispersal kernels - probability density functions

that describe the distribution of seed dispersal distances. Indeed, depending on plant

species and dispersal agents, seeds may be dispersed over a couple of hundred metres

[25]. Nevertheless, mathematical models generally describe plant dispersal through

a local process (see Section 1.2). In Chapter 2, I address the impact of changes to

plant dispersal kernels on dryland vegetation patterns.

Precipitation in drylands usually follows a seasonal or intermittent (or com-

bination thereof) pattern [148]. Under intermittent rainfall regimes, only a small

number of precipitation pulses each year are of sufficiently high intensities to activ-

ate plant growth and other processes [148]. Thus, drought periods are characterised

by decay-type mechanisms, while key ecological processes, such as plant growth and

seed dispersal are synchronised with rainfall pulses. Similarly, in latitudes featuring

a seasonal climate (and thus seasonal precipitation regimes), seed dispersal either

occurs during the dry season or is synchronised with the beginning of the wet sea-

son [146, 148, 181]. Chapters 3 and 4 present mathematical models that investigate

the impact of both seasonal and intermittent rainfall regimes on dryland vegetation

patterns.

A number of different plant types are commonly found within vegetation pat-

terns. In particular, coexistence of herbaceous (grasses) and woody (trees/shrubs)

species is widespread. In the context of striped patterns that gradually move

upslope, grasses typically dominate the uphill edge of each stripe, with the tree

species being confined to the central and downslope regions of the band [41, 179].

Verbal arguments exist that suggest that grasses act as pioneer species to colonise

new ground, but cannot outcompete trees locally [179]. In Chapters 5 to 8 I use

mathematical modelling to support this claim, as well as to suggest other mechan-

3



Chapter 1: Introduction

isms that enable species coexistence in vegetation patterns.

1.2 Mathematical framework

As a consequence of the challenges associated with the acquisition of high-quality

data on vegetation patterns, mathematical modelling, in particular continuum ap-

proaches, play a crucial role in the development of a better understanding of dryland

ecosystem dynamics [132]. A number of different modelling frameworks have been

proposed over the last three decades (see [21, 124, 247] for reviews). Notable ex-

amples are the Gilad et al. model [74] and the HilleRisLambers and Rietkerk et al.

model [86, 163]. One model that stands out due to its deliberate simplicity is the

extended Klausmeier model [99], which, after a suitable nondimensionalisation [99,

185]1 is

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
, (1.1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation and

drainage

− u2w︸︷︷︸
water uptake

by plants

+ ν
∂w

∂x︸︷︷︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
diffusion
of water

. (1.1b)

The model describes the ecohydrological dynamics of the plant density u(x, t) and

the water density w(x, t), where time t ≥ 0 and the space coordinate x ∈ R in-

creases in the uphill direction of the one-dimensional sloped domain. A constant

amount of water is added to the system per unit time, representing precipitation,

while evaporation and drainage processes remove water at a constant rate. The

third term in (1.1b) represents water consumption by plants. The nonlinearity in

the term arises due to part of the positive feedback between local vegetation growth

and water redistribution towards dense biomass patches. Water uptake depends on

the consumer density (u), the resource density (w) and the enhancement of environ-

mental conditions, for example due to increased soil permeability, in dense biomass

patches (u). As water is assumed to be the limiting resource in the ecosystem, plant

growth is proportional to water consumption. Plant death is assumed to occur at a

constant rate. Both densities undergo diffusion and water flow downhill is described

through advection. The nondimensional parameters A, B, ν and d are combinations

of several dimensional parameters, but can be interpreted as rainfall volume, rate

of plant death, speed of water flow downhill and the water’s diffusion coefficient,

respectively. The model is commonly referred to as the extended Klausmeier model,

1The diffusion parameter d = Dw/Du is the ratio of the water diffusion coefficient Dw and the
plant diffusion coefficient Du (not given in the nondimensionalisations in [99, 185])

4



Chapter 1: Introduction

since the diffusion of water was not originally included in the system, but has become

a well-established addition (e.g. [95, 199, 225, 247]).

Despite the model’s simplicity, it exhibits a rich structure of spatially patterned

solutions (periodic travelling waves), whose properties have been studied extens-

ively in the past (e.g. [8, 9, 28, 99, 184–186, 190–192, 194, 199]). Moreover, the

mathematical accessibility of the system selects it as an ideal candidate for model

extensions. Among others, these include the inclusion of autotoxicity [120], grazing

and browsing [68, 195, 197], secondary seed dispersal due to overland water flow

[35] and spatial heterogeneities in the terrain [72]. In this thesis, I will add to these

extensions by investigating the effects of nonlocal seed dispersal in Chapter 2 and

temporal variability in precipitation in Chapters 3 and 4 (complementing previous

work by Ursino and Contarini [221]), as well as exploring a model of two compet-

ing plant species in Chapters 5 to 8 (complementing previous work by Ursino and

Callegaro [27, 220]).

Chapter 2 addresses the impact of nonlocal dispersal of seeds on the onset of

vegetation patterns, i.e. on the phase transition from a spatially uniform vegetated

state to a spatially patterned state as precipitation volume decreases. In Chapters 3

and 4, I discuss effects of temporal variability in precipitation (and other processes

induced by temporal non-uniformity of rainfall) on vegetation pattern onset. An

analysis of an integrodifference model capturing seasonality in precipitation regimes

and synchronisation of (nonlocal) seed dispersal with the dry season or beginning of

the wet season is presented in Chapter 3, while intermittency of precipitation is con-

sidered in Chapter 4 through an impulsive model (combination of PDEs and discrete

maps). The remainder of the main text (Chapters 5 to 8) focusses on mechanisms

to explain species coexistence under competition for a single limiting resource. To

this end, a multispecies model is introduced in Chapter 5, followed by results that

highlight the importance of considering nonequilibrium dynamics, as coexistence

can occur as a metastable state. A different coexistence mechanism is presented in

Chapter 6, in which I argue that the spatial self-organisation of plants is sufficient

to explain species coexistence in savannas (continuous but not necessarily spatially

uniform vegetation cover), but not in vegetation patterns (alternating patches of

vegetation and bare soil). Finally, Chapters 7 and 8 show that intraspecific com-

petition dynamics need to be considered to gain insights into species coexistence

in vegetation patterns. Moreover, Chapter 8 discusses the impact of intraspecific

competition dynamics on a single-species modelling framework. The final chapter

(Chapter 9) includes an overreaching discussion of results and a brief outlook into

potential future work.

This thesis is a collection of seven research papers published in or submitted

to peer-reviewed journals during my time at the Maxwell Institute Graduate School
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Chapter 1: Introduction

in Analysis and its Applications [58–64]. The papers forming Chapters 2 to 8 of

this thesis are mostly presented in the form they were published in or submitted to

journals. Thus, each chapter is in principle self-contained, but references to other

chapters have been added. As a consequence, chapters include repetitions, in par-

ticular in their introductions and presentations of mathematical models. Moreover,

chapters slightly differ in style. Chapters 2 to 6 and 8 are aimed at a mathemat-

ical biology/applied mathematics-oriented readership, while Chapter 7 addresses a

biological audience.
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Chapter 2

Analysis of a model for banded vegetation patterns in

semi-arid environments with nonlocal dispersal

The contents of this chapter are published in [61].

2.1 Author contribution

The authors of the published paper [61] are Lukas Eigentler and Jonathan A Sher-

ratt. Lukas Eigentler performed both the analytical and numerical analyses of the

model, wrote the paper draft and reviewed and edited the manuscript. Jonathan A

Sherratt conceptualised the research, formulated the mathematical model, reviewed

and edited the manuscript and provided supervision.

Abstract

Vegetation patterns are a characteristic feature of semi-arid regions. On

hillsides these patterns occur as stripes running parallel to the contours. The

Klausmeier model, a coupled reaction-advection-diffusion system, is a delib-

erately simple model describing the phenomenon. In this chapter, we replace

the diffusion term describing plant dispersal by a more realistic nonlocal con-

volution integral to account for the possibility of long-range dispersal of seeds.

Our analysis focuses on the rainfall level at which there is a transition between

uniform vegetation and pattern formation. We obtain results, valid to leading

order in the large parameter comparing the rate of water flow downhill to the

rate of plant dispersal, for a negative exponential dispersal kernel. Our res-

ults indicate that both a wider dispersal of seeds and an increase in dispersal

rate inhibit the formation of patterns. Assuming an evolutionary trade-off

between these two quantities, mathematically motivated by the limiting be-

haviour of the convolution term, allows us to make comparisons to existing

results for the original reaction-advection-diffusion system. These comparis-

ons show that the nonlocal model always predicts a larger parameter region

supporting pattern formation. We then numerically extend the results to

other dispersal kernels, showing that the tendency to form patterns depends

on the type of decay of the kernel.
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Chapter 2: Nonlocal seed dispersal

2.2 Introduction

2.2.1 Ecological Background

Semi-arid environments are regions in which the level of rainfall is below a certain

threshold, dependent on the mean temperature and spread of rainfall across the

year [101, 151], creating a hostile environment for vegetation as plants compete

for water. A characteristic feature of many of these semi-arid environments is self-

organised patterns of vegetation. These occur due to a scale-dependent feedback,

which is caused by the modification of the soil by the existing plants, creating a

more favourable environment on a short range and the competition for water on

a longer spatial distance [166]. On gentle slopes of a few percent gradient (0.2%

to 2% [222]) striped patterns occur along the contours of the hill. Being wide and

with large distances between them, these stripes are extremely difficult to detect

from the ground. They were therefore first discovered using aerial photography

in the 1950s in British Somaliland (today Somalia) [83, 116]. Since then, striped

patterns have been observed on slopes in the Chihuahuan Desert in Mexico and the

US [38, 136, 137], New South Wales in Australia [55, 214], Niger and other countries

in the African Sahel [208, 239, 241] and many other regions as reviewed by [222,

Table 1 and Figure 3]. Many ecologists studying these patterns reported that the

vegetation bands slowly move uphill [137, 222, 241] with a migration speed varying

between 0.2m and 1.5m per year [222]. They argue that the reason for this is that

the rainwater, which often falls in form of torrential rain at irregular intervals [23],

runs off the bare ground to the uphill edge of the vegetation band below, where

it can infiltrate the ground more easily, providing a more favourable environment

for plant growth on the uphill edge than on the downhill edge [138, 239]. Other

authors observed stationary patterns [55], which they attribute to changes in the

soil on bare ground that inhibits plant growth [55] and a skewed distribution of

plant dispersal caused by seeds travelling downhill in the flow of the water [169,

210]. A more recent survey confirms the occurrence of both upward migration

and static vegetation bands, by comparing satellite data from spy satellites used

during the Cold War to more recent data [46]. Studying these patterns is of crucial

importance as changes in the width of and distance between vegetation stripes may

be an indicator for an imminent and irreversible switch to desertification [96, 164].

The long timescale in the evolution of patterned vegetation and the inability

to generate it in laboratory settings limit the availability of observed data. Instead

various different theoretical models have been developed [21]. These can be classified

into two main groups; models based on plant to plant interactions, among other

things including individual plant’s morphology such as its root network and shading

[74, 75, 81, 106] and models focusing on water redistribution. The latter class of

8



Chapter 2: Nonlocal seed dispersal

models are based on the Klausmeier model [99], on which we will focus here.

2.2.2 The Models

The nondimensionalised form of the Klausmeier model (see [99, 185] for details on

the nondimensionalisation) is the reaction-advection-diffusion system

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
, (2.1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake

by plants

+ ν
∂w

∂x︸︷︷︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
diffusion
of water

. (2.1b)

Originally, this model did not include diffusion of water, but this term was added

later and is now well established [95, 199, 225, 247]. This extended Klausmeier

model will be referred to as the “local Klausmeier model” throughout the text. In

the model, u(x, t) represents the plant density, w(x, t) the water density, t > 0 the

time and x ∈ R the space, where the positive direction is in the uphill direction

of a one-dimensional domain of constant gradient. The system assumes constant

rainfall, proportionality of water density to evaporation [167, 171] and correlation of

plant growth to water uptake. The latter is assumed to be proportional to the water

density and the plant density squared, because the water infiltration capacity of the

soil depends on the presence of plants [165, 222]. The ground where vegetation

stripes are situated is estimated to receive around 1.5 to 2.5 times as much water

as the annual precipitation due to water running off the bare ground towards the

vegetation stripes [38]. The parameters A > 0, B > 0, ν > 0 and d > 0 represent

rainfall, plant loss, the rate of the water flow in the downhill direction and the rate of

water diffusion, respectively. Due to the nondimensionalisation they are however a

combination of different ecological quantities. Parameter estimates are A ∈ [0.1, 3],

B ∈ [0.05, 2] [99, 163] and ν = 182.5 [99]. The large size of ν compared to the other

parameters reflects the slow speed of plant dispersal compared to water flow, and it

allows an analysis of patterned solutions of (2.1) by obtaining results for the model

to leading order in ν, such as by [184–186, 190–192]. The model is deliberately kept

simple. There are however a wide range of systems all based on the Klausmeier

model (2.1) that take into account variable precipitation [100] and grazing [86, 224]

and models that distinguish between the surface water density and the water density

in the soil [75, 86, 163].

In (2.1), plant dispersal is modelled by a diffusion term. In reality, nonlocal

9
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processes are often involved, such as seed dispersal by wind or separated stages for

plant growth and seed dispersal [156]. This can be modelled by integrodifferential

equations [4, 155]. To do this, the change of the plant density u(x, t) at a point x

that was caused by diffusion is replaced by the convolution integral∫ ∞
−∞

φ(x− y) (u(y, t)− u(x, t)) dy.

The kernel function φ(x, y) is a probability density function, describing the probabil-

ity of seeds originating at the point y being dispersed to point x [156]. This approach

is not only used in modelling plant dispersal but can, among others, be considered

to model dispersal in general competition models [40, 89] showing an evolutionary

advantage of nonlocal dispersal under certain boundary conditions [94], or models

describing a single species subject to a unidirectional flow [114]. It is to assumed

that seed dispersal only depends on the distance x− y (i.e. assuming homogeneous

and isotropic dispersion of seeds [135]). This kind of nonlocal seed dispersal is con-

sidered for example by [16, 156, 157] for modified versions of the Klausmeier model

that consider soil water separately from surface water [86, 163]. Motivated by this,

we will consider the “nonlocal Klausmeier model”

∂u

∂t
= u2w −Bu+ C

(∫ ∞
−∞

φ(x− y)u(y, t)dy − u(x, t)

)
, (2.2a)

∂w

∂t
= A− w − u2w + ν

∂w

∂x
+ d

∂2w

∂x2
. (2.2b)

The dispersal coefficient C > 0, which scales the convolution term, describes the

plant’s dispersal rate by taking into account the plant’s fecundity, seed mortality

and germination rate and seed establishment ability [156].

If the kernel function φ(x) is decaying exponentially as x→∞, the local model

can be obtained from the nonlocal model by setting C = 2/σ(a)2, where σ(a) denotes

the standard deviation of the dispersal kernel with scaling parameter a, and taking

the limit as a → ∞. To show this, write φ(x) = aϕ(ax). Then, the integral in the

dispersal term can be transformed to∫ ∞
−∞

φ(x− y)u(y, t)dy =

∫ ∞
−∞

ϕ(z)u
(
x− z

a
, t
)

dz,

by using the change of variables y = x− z/a. Considering the Taylor expansion of

u(x− z/a, t) in z/a, an application of Watson’s lemma (i.e. integrating term-wise)

10
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gives

∫ ∞
−∞

φ(x− y)u(y, t)dy

= u(x, t)− 1

a

∂u

∂x
(x, t)

∫ ∞
−∞

ϕ(z)zdz +
1

2a2

∂2u

∂x2
(x, t)

∫ ∞
−∞

ϕ(z)z2dz +O

(
1

a3

)
.

(2.3)

In this study we will assume that the kernel φ is even with its mean located at x = 0.

Therefore the coefficient of the first order derivative in (2.3) is zero and thus∫ ∞
−∞

φ(x− y)u(y, t)dy = u(x, t) +
σ(a)2

2

∂2u

∂x2
(x, t) +O

(
1

a3

)
,

using ϕ(x) = φ(x/a)/a and the definition of the second moment of a probability

distribution. Therefore, setting C = 2/σ(a)2 gives

C

(∫ ∞
−∞

φ(x− y)u(y, t)dy − u(x, t)

)
=
∂2u

∂x2
(x, t) +O

(
1

a

)
→ ∂2u

∂x2
(x, t),

as a→∞. This limiting behaviour will allow us to make comparisons between the

local and the nonlocal model. Two kernel functions for which the derivation above

holds true are the Laplacian

φ(x) =
a

2
e−a|x|, (2.4)

and the Gaussian distribution

φ(x) =
ag√
π
e−a

2
gx

2

, (2.5)

where x ∈ R, and a, ag > 0 are the scale parameters of the distributions, respectively.

The Laplacian kernel corresponds to plants (seeds) dispersing as a random walk with

individual plants (seeds) settling at different random times [25, 147]. One main goal

of this chapter is to investigate how a change in the width of the kernel affects

the tendency to form patterns. Closely related to this, a second main aspect we

will address in this chapter is a comparison between different dispersal kernels. In

particular we will show that the type of decay (i.e. exponential or algebraic) has

an influence on the tendency to form patterns. The Laplacian kernel is not only

biologically relevant [25, 92, 147] but also allows us to obtain analytic results due

to the form of its Fourier transform and will therefore be the main focus of this

chapter. Note that this kernel further allows a transformation from a nonlocal to a
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local model by introducing an additional variable [22, 77, 128], but in the interest

of considering other dispersal kernels we will not use this approach. To investigate

the effects of the kind of decay of the kernel, we will finally consider the power law

distribution

φ(x) =
(b− 1)ap

2 (1 + ap|x|)b
, b > 3, (2.6)

where x ∈ R, and ap > 0, b > 0 are the scale and shape parameters of the distri-

bution, respectively. Note that for this kernel function the derivation of the local

model above does not hold. For a review of other biologically relevant plant dispersal

kernels see [25, Table 1].

The purpose of this study is to gain an understanding of how the shape of the

dispersal kernel in the nonlocal model (2.2) affects the tendency to form patterns.

In particular, we will mainly focus on the maximum rainfall parameter Amax that

supports the formation of patterns, or in other words, the lowest amount of pre-

cipitation that allows plants to form a homogeneous vegetation cover. This critical

rainfall level will be determined using different approaches for the Laplacian kernel

(2.4). While all those approaches provide the same information on Amax, they all

give different further insights into other properties of the model. In Section 2.3 we

will investigate the model using linear stability analysis, obtaining information on

the pattern wavelength alongside the upper bound on the rainfall. The constant

uphill migration of the plants suggests studying the system in its travelling wave

form. This will be done in Section 2.4, where the critical rainfall level can be de-

duced from the loci of a Hopf bifurcation. Finally, the asymptotic form of the model

is studied in Section 2.5. All these approaches make use of the size of the parameter

ν by obtaining conditions to leading order in ν as ν → ∞. A comparison to other

dispersal kernels is shown in Section 2.6 using numerical simulations of the model.

From these we will be able to deduce parametric trends on how the tendency to form

patterns is affected by the width and the type of decay of the dispersal. Finally, we

discuss our results from an ecological viewpoint in Section 2.7. Motivated by the

discussion above, the analysis will be done in three different cases; the situation in

which C = 2/σ(a)2, which allows us to compare our results for the Laplacian kernel

to the corresponding results for the local model obtained by [184–186, 190–192],

and the cases in which one of C or a is kept constant, while the other parameter is

varied.

12
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2.3 Linear Stability Analysis

In this section we will use linear stability analysis to investigate to occurrence of

spatial patterns in the nonlocal Klausmeier model (2.2) with the Laplacian kernel

(2.4). We will show that the maximum rainfall parameter Amax supporting pattern

formation is Os(ν
1/2) (f = Os(ν) ⇐⇒ f = O(ν) and f 6= o(ν)), and will obtain an

explicit expression for it. This will show that both an increase in a for C being kept

constant and an increase in C for a being kept constant yields an increase of Amax,

while under the assumption that C = a2 an increase in a (and thus C) results in a

decrease of the critical value Amax. Further this analysis will allow us to investigate

the wavelength of the patterned solutions of the model.

The steady states of (2.2) are

(u1, w1) = (0, A), (u2, w2) =

(
2B

A−
√
A2 − 4B2

,
A−
√
A2 − 4B2

2

)
,

(u3, w3) =

(
2B

A+
√
A2 − 4B2

,
A+
√
A2 − 4B2

2

)
,

where (u2, w2) and (u3, w3) only exist if A ≥ 2B. The steady state (u1, w1) describing

extinction of plants u is always stable, while (u3, w3) is unstable for all choices of

parameters, provided it exists. The steady state (u,w) := (u2, w2) is stable to

spatially homogeneous perturbations if B < 2. For B > 2, it is only stable for

sufficiently large values of A. Estimates of the parameters, however, suggest that

B < 2.

To investigate the possibility of spatial patterns, consider spatially heterogeneous

perturbations u = u + ũ(x, t), w = w + w̃(x, t) proportional to eλt+ikx for growth

rate λ ∈ C and wavenumber k > 0. Linearising the resulting system gives that λ

satisfies the dispersion relation

λ =
1

2

(
C
(
φ̂(k)− 1

)
− dk2 + α + δ + iνk ±

√
R + iI

)
,

where φ̂(k) is the Fourier transform of φ, α = B, β = 4B2/(A −
√
A2 − 4B2),

γ = −2B, δ = −2A/(A−
√
A2 − 4B2),

R =
(
C
(
φ̂(k)− 1

)
+ dk2

)2

+ 2C
(
φ̂(k)− 1

)
(α− δ)

+
(
2αd− 2δd− ν2

)
k2 + 4γβ + (α− δ)2,

13
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and

I = −2νk
(
C
(
φ̂(k)− 1

)
+ dk2 + α− δ

)
.

For a Turing-Hopf bifurcation to occur, at least one eigenvalue needs to have positive

real part. Therefore, the condition for patterns to form is

<(λ) =
1

2

(
α + δ − dk2 + C

(
φ̂(k)− 1

)
+

1√
2

(√
R2 + I2 +R

) 1
2

)
> 0. (2.7)

To investigate this further for φ being the Laplacian kernel (2.4), we will make use

of ν � 1, by expanding (2.7) in ν. With all other parameters Os(1) as ν →∞, this

gives

<(λ) = α− Ck2

a2 + k2
+O

(
1

ν2

)
, (2.8)

provided that (a2 + k2)(δ − α − dk2) + Ck2 < 0. If this condition is not satisfied,

the expansion is <(λ) = −dk2 + δ < 0 for any k > 0. Substituting k = 0 into

(2.8), yields <(λ) = α > 0, which contradicts the stability of (u,w) to spatially

homogeneous perturbations. The occurrence of patterns is captured by assuming

that A is Os(ν
1/2). Expanding in ν � 1 then gives

<(λ) = −(−B5ν2 +B4Cν2) k4 + (−B5a2ν2 + A4B + A4C) k2 + A4Ba2

(B4ν2k2 + A4) (a2 + k2)
+O

(
1

ν

)
.

(2.9)

Therefore, <(λ) > 0 if

q
(
k2
)

:=
(
−B5ν2 +B4Cν2

)
k4 +

(
−B5a2ν2 + A4B + A4C

)
k2 + A4Ba2 < 0.

This polynomial in k2 attains its minimum

q
(
k2

min

)
=
− (B + C)2A8 − 2B5a2ν2 (B − 3C)A4 −B10a4ν4

4B4ν2 (B − C)
, (2.10)

at

k2
min =

−B5a2ν2 + A4B + A4C

2B4ν2 (B − C)
.

Solving q(k2
min) < 0 for A4 gives A4

1 < A4 < A4
2 provided C > B, where A4

1 < A4
2

are the roots of (2.10). Substituting A4
1 into k2

min gives k2
min < 0, which contradicts
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kmin ∈ R. Therefore, the sufficient condition for patterns to occur is

A < Amax =

(
3C −B − 2

√
2C
√
C −B

(B + C)2

) 1
4

a
1
2B

5
4ν

1
2 , (2.11)

valid to leading order in ν as ν → ∞. As expected, setting C = a2 and taking the

limit a → ∞ yields the corresponding condition for the local model obtained by

[191], which is

A < Amax =
(√

2− 1
) 1

2
B

5
4ν

1
2 . (2.12)

2.3.1 Wavelength

It is of interest to investigate the wavelength of the patterns. While a rigorous

analysis of this requires tools from nonlinear analysis, one can obtain some inform-

ation about the wavelength from the results obtained in this section. For this we

will assume that the patterns are dominated by the wavenumber giving the largest

growth, that is the wavenumber kmax giving the maximum of <(λ) given in (2.9).

Differentiating <(λ) with respect to k2 shows that it obtains its maximum at

k2
max = −

A2a
(

2A2B2aν
(
B − C

2

)
+
√

2BC (−B4a2ν2 + A4)
)

−B6Ca2ν3 + 2A4B3ν
.

Therefore the wavelength L is given by

L =
2π

kmax

= 2π

 −B6Ca2ν3 + 2A4B3ν

A2a

(
A2B2aν (2B − C) +

√
2
√
BC (−B2aν + A2)2 (B2aν + A2)2

)


1
2

.

(2.13)

The wavelength L is decreasing in the rainfall parameter A, decreasing in the

dispersal parameter a if the dispersal coefficient C is fixed, increasing in C when

a is kept constant, and increasing in a if one sets C = a2. Figure 2.1a shows the

wavelength as it varies with the rainfall parameter A for some fixed B, C, a and

ν. Also note that when C = a2, the wavelength (2.13) for the nonlocal model

approaches the wavelength predicted by the local model as a→∞, as expected by

the limiting behaviour of the nonlocal model. Combining these two results shows
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Figure 2.1: Variation in pattern wavelength with rainfall A and standard deviation
σ(a). Part (a) shows the wavelength (2.13) of the patterns as it decreases with the
rainfall A for nonlocal model. The parameter values are B = 0.45, ν = 182.5, C = 1
and a = 1. Part (b) compares the wavelength predicted from the nonlocal model
with the setting C = a2 as it varies with the dispersal parameter a and compares it
to the wavelength obtained from the local model. It shows that the nonlocal model
predicts a shorter distance between the vegetation stripes, especially if the shape of
the dispersal kernel is wide. However, the difference is very small (see the y-axis of
the plot). The parameter values used for this are A = 1, B = 0.45, ν = 182.5

that the nonlocal model predicts a shorter distance between vegetation stripes than

the local model with this setting of C. This is visualised in Figure 2.1b.

2.4 Travelling Wave Solutions

The constant uphill migration of the vegetation patterns suggests considering trav-

elling waves. In this section we will investigate the travelling wave form of the

nonlocal Klausmeier model (2.2). Pattern solutions of the original PDE model then

correspond to periodic solutions of the travelling wave ODEs. From the equations

in their travelling wave form we will not only be able to confirm the results on the

maximum rainfall supporting pattern formation obtained by performing linear sta-

bility analysis in Section 2.3, but also deduce more information about the migration

speed of the patterns. The nature of the patterned solutions fundamentally depends

on the scaling of the migration speed c. The highest rainfall level supporting pattern

formation occurs for c = Os(1). For this situation we determine conditions for Hopf

bifurcations to occur; for the local Klausmeier model (2.1) the parameter range in

the A-c plane that supports pattern formation is bounded above by the locus of a

Hopf bifurcation [194], and we anticipate the same for the nonlocal model.
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Applying the travelling wave ansatz u(x, t) = U(z), w(x, t) = W (z), z = x − ct
to the nonlocal model (2.2), gives

dU

dz
= −1

c

(
U2W −BU + C

(∫ ∞
−∞

φ(z − z′)U(z′)dz′ − U(z)

))
,

dW

dz
= − 1

c+ ν

(
A−W − U2W + d

d2W

dz2

)
.

To investigate the occurrence of a Hopf bifurcation, consider perturbations Ũ(z),

W̃ (z) proportional to eλz of the steady state (U,W ) = (u,w). Setting φ to be the

Laplacian kernel (2.4) and linearising the resulting system gives that λ satisfies

λ5 + αλ4 + βλ3 + γλ2 + δλ+ ε = 0, (2.14)

where

α =
d(B − C) + c(c+ ν)

cd
,

β =
−2B2 (a2cd− (B − C)(c+ ν))− Ac

(
A+
√
A2 − 4B2

)
2B2cd

,

γ =
−2B2a2 (d+ c(c+ ν)) + A(B + C)

(
A+
√
A2 − 4B2

)
− 4B3

2B2cd
,

δ =
a2
(
−2B3(c+ ν) + Ac

(
A+
√
A2 − 4B2

))
2B2cd

,

ε =
a2
(
−A

(
A+
√
A2 − 4B2

)
+ 4B2

)
2B2cd

.

To find conditions for a Hopf bifurcation to occur, set λ = iω, ω ∈ R. This splits

(2.14) into its real and imaginary parts, which after solving for and eliminating ω2

gives the condition

γ ±
√
γ2 − 4αε

2α
=
β ±

√
β2 − 4δ

2
. (2.15)

The assumption ω ∈ R requires that the left and right hand sides of this equation are

both positive. This leads to an additional condition (2.18) that will be considered

later. To further investigate (2.15), we expand it in 1/ν. This gives

((B − C) sign(c) +B + C)a2

B − C
+O

(
1

ν

)
= 0.
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For the first term of the expansion to be zero, one would require B > C with one

of the parameters being equal to zero, depending on the sign of c. This is, however,

not possible due to the positivity assumptions on the parameters. Investigating the

next term of the expansion suggests using the scaling A = Os(ν
1/2). Applying this

scaling to (2.15), expanding in ν � 1 and then solving for c shows that a Hopf

bifurcation exists at

c± =

(
B

2A2
+

A2(2B − C)

2 (−B4a2ν2 + A4)

±
(
B2

4A4
+

3BC

2 (−B4a2ν2 + A4)
+

4B6a2ν2 − 4A4BC + A4C2

4 (−B4a2ν2 + A4)2

) 1
2

)
νB2, (2.16)

to leading order in ν as ν →∞. Since the migration speed c ∈ R, this requires

A < Amax =

(
3C −B − 2

√
2C
√
C −B

(B + C)2

) 1
4

a
1
2B

5
4ν

1
2 , (2.17)

and C > B. This is the same condition as (2.11) obtained in Section 2.3.

In deriving this condition we assumed that the terms in (2.15) were positive. By

applying the scaling A = Os(ν
1/2) and expanding in ν � 1, this yields the bounds

max

{
0,
B2(B − C)ν

A2

}
< c <

B3ν

A2
, (2.18)

to leading order in ν. This condition is satisfied if C > B. In the case of C = a2 it

holds if a >
√
B.

Setting C = a2 and taking the limit a → ∞ in both (2.16) and (2.17) gives, as

expected by the considerations on the limiting behaviour of the model, the corres-

ponding conditions obtained by [191] for the local model. Further the right hand

side of (2.17) is decreasing for all a >
√
B in the setting C = a2. Combined with the

observation that it approaches the corresponding condition for the local model as

a→∞, this shows that pattern formation is more likely in the nonlocal model with

the tendency to form patterns increasing as the dispersal parameter a decreases,

i.e. as the width of the kernel φ increases. Figure 2.2a shows this for some fixed

parameter values. Finally, Figure 2.2b combines these considerations by showing the

loci (2.16) of the Hopf bifurcations of the nonlocal model for different values of the

dispersal parameter a in the A-c plane and compares it to the corresponding locus

of the local model. As shown previously, this implies that in the nonlocal model

a larger parameter region supports pattern formation, especially as the dispersal

parameter a is decreased, i.e. as the width of the kernel is increased. This means
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Figure 2.2: Variation in the loci of the Hopf bifurcation and maximum rainfall
parameter Amax with kernel width in the case C = a2. The plot in (a) compares
the upper bound (2.11) on the rainfall parameter A of the nonlocal model using the
Laplacian kernel with C = a2 with condition (2.12) obtained for the local model.
Note that one requires a >

√
B for Amax ∈ R in the case of the nonlocal model.

Part (b) compares the loci (2.16) of the Hopf bifurcations of the nonlocal model for
different values of the dispersal parameter a to the locus of the local model obtained
by [191]. The parameter values used in both figures are B = 0.45, ν = 182.5

that the nonlocal model predicts that plants which disperse their seeds over a larger

distance will undergo a change from homogeneous vegetation to patterns at a higher

level of rainfall than those plants with a narrower and diffusion-like dispersal, as the

amount of rainfall is gradually decreased.

If C 6= a2, it is not appropriate to compare the nonlocal model to the local

model. However, one can still investigate how a change in the dispersal parameter

a affects the tendency to form patterns in this situation. We will first consider the

case in which C is constant. In this situation (2.17) yields that the highest rainfall

parameter supporting pattern formation Amax is proportional to a1/2. This means

that if the dispersal kernel gets narrower, a larger range of the rainfall parameter

A supports pattern formation. This is visualised in Figure 2.3a, which shows the

maximum rainfall parameter Amax plotted against the dispersal parameter a and in

Figure 2.3b, which visualises the location of the Hopf bifurcation (2.16), where C is

constant. This is contrary to the behaviour observed in the case of C = a2, where a

narrower kernel gave less tendency to form patterns.

Investigating the final case, i.e. the one of fixed a and varying C, shows that

the critical rainfall parameter Amax is decreasing with increasing C for all C > B.

This shows that the more the plants invest in their dispersal, the less likely is the

formation of patterns. Similar to the previous two cases, the change in Amax is
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Figure 2.3: Variation in the loci of the Hopf bifurcation and maximum rainfall
parameter Amax with kernel width in the case of constant C. The plot in (a) shows
how upper bound Amax given in (2.17) of the rainfall parameter A that supports
pattern formation in the nonlocal model using the Laplacian kernel varies as the
dispersal parameter a is changed. Here C = 1 is fixed. Part (b) shows the loci
(2.16) of the Hopf bifurcations of the nonlocal model with the Laplacian kernel for
different values of the dispersal parameter a, where the dispersal coefficient C is
constant. The parameter values used here are B = 0.45, C = 1, ν = 182.5

visualised in Figure 2.4a and the loci of the Hopf bifurcations in the A-c plane is

shown in Figure 2.4b.

2.5 Asymptotic analysis of the integro-PDE model

In the previous sections we have applied different techniques to the model (2.2) to

find conditions for pattern formation in their leading order form. In this section

we will confirm these by first obtaining the leading order form of the Integro-PDE

model and then deducing conditions for Hopf bifurcations from it.

Applying the rescalings u = AB−1u∗, w = A−1B2w∗, t = B−1t∗, c = Bc∗,

ν = A2B−2Γ−1, B−1C = D to (2.2) gives

∂u

∂t
= u2w − u+D

(∫ ∞
−∞

φ(x− y)u(y, t)dy − u(x, t)

)
,

Bν−1∂w

∂t
= Γ

(
1− u2w

)
− ν−1w +

∂w

∂x
+ dν−1∂

2w

∂x2
,

where the ∗’s were dropped for brevity. Again assuming that A = Os(ν
1/2), the
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Figure 2.4: Variation in the loci of the Hopf bifurcation and maximum rainfall
parameter Amax with kernel width in the case of constant a. The plot in (a) shows
how upper bound Amax given in (2.17) of the rainfall parameter A that supports
pattern formation in the nonlocal model with Laplacian kernel varies as the dispersal
coefficient C is changed. Here a = 1 is fixed. Note that C > B is required for
Amax ∈ R. Part (b) shows the loci (2.16) of the Hopf bifurcations in the same
situation. The parameter values used here are B = 0.45, C = 1, ν = 182.5

leading order form in ν of this is

∂u

∂t
= u2w − u+D

(∫ ∞
−∞

φ(x− y)u(y, t)dy − u(x, t)

)
,

0 = Γ
(
1− u2w

)
+
∂w

∂x
.

Applying the travelling wave ansatz u(x, t) = U(z), w(x, t) = W (z), z = x − ct,

gives

−cdU

dz
= U2W − U +D

(∫ ∞
−∞

φ(z − z′)U(z′)dz′ − U(z)

)
,

0 = Γ
(
1− U2W

)
+

dW

dz
.

This system has a unique steady state given by (U,W ) = (1, 1). Consider small

perturbations Ũ , W̃ of the steady state that are proportional to eλz. Letting φ to be

the Laplacian kernel (2.4) and linearising the resulting system yields that λ satisfies

λ4 + αλ3 + βλ2 + γλ+ δ = 0, (2.19)
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where

α =
1−D − Γc

c
, β =

Γ(1−D)− a2c

c
, γ =

a2(Γc− 1)

c
, δ = −Γa2

c
.

To find conditions for a Hopf bifurcation to occur, again set λ = iω, ω ∈ R. Analog-

ous to the preceding sections, this allows splitting (2.19) into its real and imaginary

parts, which after solving for ω2, assuming that ω 6= 0, gives

β ±
√
β

2 − 4δ

2
=
γ

α
, (2.20)

as the leading order condition for a Hopf bifurcation to occur. The restriction ω ∈ R,

implies the additional requirement

max

{
0,

1−D
Γ

}
< c <

1

Γ
. (2.21)

Solving (2.20) for c gives

c± =
(D − 3) Γ2 + a2 ±

√
(D + 1)2 Γ4 − 2a2 (3D − 1) Γ2 + a4

2Γ (a2 − Γ2)
. (2.22)

To satisfy (2.21), one requires C > B and

Γ <

(
3D − 1 + 2

√
2D(D − 1)

(D + 1)2

) 1
2

a. (2.23)

Therefore, the steady state (U,W ) = (1, 1) undergoes a Hopf bifurcation if (2.21),

(2.22) and (2.23) are satisfied. Substituting the rescalings used at the beginning of

this section into these three conditions gives the same conditions (2.18), (2.16) and

(2.17) that were obtained form the travelling wave equations in Section 2.4.

2.6 Numerical Simulations

So far, we have only considered one particular form of dispersal kernel in the non-

local Klausmeier model (2.2). In this section we will solve the model numerically

for different kernel functions and use the solutions to estimate the maximum rain-

fall parameter giving patterns for each kernel. The simulations will show that the

parametric trends that were obtained for the Laplacian kernel carry over to other

kernel functions, i.e. a wider dispersal kernel and a higher dispersal rate decrease

the tendency to form patterns, while under the assumption that C = 2/σ(a)2, an

increase in kernel width causes an increase in the size of the parameter region giving
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patterns. Our numerical simulations will further show that the tendency to form

patterns depends on the type of decay of the dispersal kernel.

In the analysis performed in previous sections, we considered the model on an

infinite domain. To mimic this in the simulations, we will consider a subdomain

centred in a larger domain with the following initial conditions; outside the smaller

subdomain the system’s initial state will be set to the steady state, while on the

subdomain a random perturbation will be added. The idea of this is to choose the

outer domain large enough so that any conditions imposed on the boundary of this

domain (which are set to be periodic in our simulations) do no affect the solution

on the inner subdomain in the finite time that is considered in the simulation. The

solution is then only considered on the subdomain on which a perturbation was

introduced. To solve the Integro-PDE system (2.2), it is first transformed into

an ODE system by discretising its space domain and then solved by the built-in

MATLAB ODE solver ode15s. A significant simplification is made by computing

the convolution term using the fast Fourier transform, as it reduces the number of

operations required to find the convolution from O(M2) to O(M log(M)) in each

step (e.g. [36]), where M is the number of points of the space domain. Figure

2.5 shows typical solutions obtained by this method; in Figure 2.5a the rainfall was

chosen large enough for the solution to converge to the steady state, while for Figure

2.5b parameters that produce a patterned solution of the nonlocal Klausmeier model

using the Laplacian kernel were used.

Using these simulations, we set up a scheme, based on the amplitude of the oscil-

lation of the solution of the nonlocal Klausmeier model (2.2) relative to the steady

state that approximates the critical rainfall parameter Amax, that is the maximum

rainfall parameter supporting pattern formation, for different kernel functions φ(x).

Unlike in the simulation results shown in Figure 2.5, we run the simulations over a

shorter amount of time (up to t = 30), as we are only interested in the onset of spa-

tial patterns rather than in any of their properties. The kernel functions used in our

simulations are those introduced in Section 2.2, i.e. the Laplacian (2.4), the Gaus-

sian (2.5) and the power law kernel (2.6). Note that the standard deviations σ(a) are

given by σ(a) =
√

2/a for the Laplacian kernel, σ(ag) = 1/(
√

2 ag) for the Gaussian

kernel and σ(ap) =
√

2/(
√
b2 − 5b+ 6 ap) for the power law kernel, provided b > 3.

If the shape parameter of the power law kernel is b ≤ 3, its standard deviation is

infinite and a meaningful comparison to other kernel functions cannot be performed

based on their standard deviations. In our simulations we consider both b = 3.1

and b = 4. As in previous sections, we will consider the case in which C = 2/σ(a)2,

motivated by the limiting behaviour of the nonlocal model, and the cases in which

either C or a is assumed to be constant and the other parameter is varied.

Figure 2.6a shows the results of our simulations in the case of C being con-
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Figure 2.5: Numerical solution of the nonlocal Klausmeier model (2.2) using the
Laplacian kernel (2.4) for different rainfall levels. In (a) A = 2 yields convergence
to the coexisting steady state from which the system is perturbed initially. Part
(b) displays a patterned solution obtained by setting A = 1. The other parameter
values used in both simulations are B = 0.45, ν = 50, d = 100, a = 2, C = 4 and
the number of space points is M = 29
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Figure 2.6: Illustration of the results of our numerical scheme to approximate the
maximum rainfall parameter Amax in the case of constant C. Part (a) shows the
results of our simulations in the case of C being constant. We have determined
the maximum rainfall parameter giving patterns for the Laplacian kernel (2.4), the
Gaussian kernel (2.5) and the power law kernel (2.6) for both b = 3.1 and b = 4,
at σ(a) = {0.1, 0.2, . . . 2.1}. The parameter values used in these simulations are
B = 0.45, C = 1, ν = 50, d = 1. Part (b) compares the simulation results obtained
for the Laplacian kernel to the corresponding condition (2.17) valid to leading order
in ν

stant. The trend that a narrower dispersal kernel requires a higher level of rainfall

to form homogeneous vegetation, which was predicted by the leading order form

(2.17) of Amax for the Laplacian kernel, carries over to the other kernels used in the

simulations. Further one can observe that the power law distributions which have

algebraic decay give a larger value of Amax than those with exponential decay if the

standard deviation is sufficiently large (σ(a) ' 0.3), while for narrower kernels the

opposite is true. While the results of our simulations for the Laplacian kernel and

the corresponding leading order form of Amax fit well for sufficiently large values

of the standard deviation σ(a), the fit is poorer for narrower kernel functions (see

Figure 2.6b for a comparison). The reason for this is the relatively small choice of

ν = 50, which was taken to improve the speed of the simulations. Solutions for

larger ν indicate that the relative difference between Amax in our simulations and in

the analytical approximation decreases (slowly) with increasing ν.

We repeat the same scheme in the setting of C = 2/σ(a)2 for the same kernel

functions. The results of this are shown in Figure 2.7. Considering the type of decay

of the kernel functions, the results of it are similar to the simulations of the case

of C being constant. One can observe that the distributions with algebraic decay
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Figure 2.7: Illustration of the results of our numerical scheme to approximate the
maximum rainfall parameter Amax in the case of C = 2/σ(a)2. We have considered
the Laplacian kernel (2.4), the Gaussian kernel (2.5) and the power law kernel (2.6)
for both b = 3.1 and b = 4 and determined the value of the maximum rainfall
parameter giving patterns Amax at σ(a) = {0.1, 0.2, . . . 2.1} for each kernel function
in the case of C = 2/σ(a)2. The parameters used in this simulation are B = 0.45,
ν = 50, d = 1

yield a larger value of Amax than the distributions with exponential decay if the

kernel is sufficiently wide, while for narrow kernels the opposite is true. Further,

considering one specific kernel on its own, a narrower dispersal kernel now gives a

lower value of the maximum rainfall parameter supporting pattern formation. This

is in contrast to the case in which C was kept constant but in accord with the leading

order form (2.17) of Amax. As before, it can also be observed from the simulations

of the model using the Laplacian kernel that for the choice of ν = 50, the numerical

simulations are a good approximation of the leading order result only for sufficiently

wide kernels.

Finally, we apply the same scheme to the case of fixed dispersal parameter a and

varying dispersal coefficient C (Figure 2.8). As in the previous cases, the trends of

the simulations of other kernel functions are again in alignment with the leading

order result (2.17) for the Laplacian kernel. An increase in dispersal rate C causes

a decrease in Amax for each of the dispersal kernels considered in our simulations.

Further, the comparison of kernels with algebraic and exponential decay depends

on the choice of standard deviation σ(a), as indicated by the previous simulations

in which the standard deviation was varied. Figure 2.8b shows that for a small

standard deviation (σ(a) = 0.2 in this case), the kernels with exponential decay

predict that a higher level of rainfall is required to form a uniform vegetation cover

than those with algebraic decay. If the standard deviation is sufficiently large, the
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Figure 2.8: Illustration of the results of our numerical scheme to approximate the
maximum rainfall parameter Amax in the case of constant a. We have considered the
Laplacian kernel (2.4), the Gaussian kernel (2.5) and the power law kernel (2.6) for
both b = 3.1 and b = 4 and determined the value of the maximum rainfall parameter
giving patterns Amax at C = {0.5, 0.6, . . . 2} for each kernel function, with a being
fixed. In (a), the standard deviation was chosen as σ(a) = 1, in (b) as σ(a) = 0.2.
The other parameters used in this simulation are B = 0.45, ν = 50, d = 1

opposite trend is observed. This is visualised in Figure 2.8a, where the standard

deviation was set to σ(a) = 1.

2.7 Discussion

The main results of this chapter are given by (2.16) and (2.18), which give an upper

bound for the parameter region in the A-c plane supporting pattern formation, valid

to leading order in ν, for the nonlocal Klausmeier model (2.2) with the Laplacian

kernel (2.4). In particular this gives the upper bound Amax, defined in (2.17), on

the rainfall parameter, again valid to leading order in ν. In other words, Amax

represents the lowest level of rainfall that allows plants to form a homogeneous

vegetation cover, while lower amounts of water only support banded vegetation.

These results hold under the assumptions that the migration speed c is Os(1) and

that the parameter region supporting pattern formation is bounded above by the

loci of Hopf bifurcations, which was shown by [194] for the local Klausmeier model

(2.1). While the simple nature of the Klausmeier model makes it impossible to

deduce any quantitative conclusions from these results, they do give a good insight

into the parametric trends of the model. These trends fundamentally depend on

the assumption made on the factor C scaling the convolution term in the nonlocal
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model.

In this chapter we considered three different cases of the coefficient C in the

nonlocal Klausmeier model; that of choosing it to be constant, the one of varying

C for fixed dispersal parameter a and that of setting C = 2/σ(a)2. In the case

of C being fixed, a change in the dispersal parameter a only affects the width of

the dispersal kernel, but leaves the term scaling the nonlocal plant dispersal term

unchanged. It can be immediately concluded from (2.17) that the threshold Amax

increases as the kernel width decreases. This increase in the size of the parameter

region supporting pattern formation is also visualised in Figure 2.3b. This means

that the wider plants disperse their seeds, the less water they require to form a

homogeneous vegetation cover. In particular, our results show that if plant dispersal

is wide enough, the location of the Hopf bifurcation bounding the pattern forming

parameter region completely lies in the region that only supports the trivial steady

state describing complete desertification. In this case, the assumptions taken in

this chapter predict that no striped vegetation can occur. Plants either form a

homogeneous vegetation cover or disappear completely.

The expression given by (2.17) is only valid for the Laplacian kernel (2.4) and

to leading order in ν. The numerical simulations in Section 2.6 allow us to com-

pare this condition to those for other kernel functions that have been suggested

by studies on plant dispersal (see [25] for an overview). Our results suggest that

the maximum rainfall level giving patterned vegetation depends on the width and

therefore also on the type of decay of the dispersal kernel. It can be seen from

Figures 2.6a and 2.7 that those probability distributions that decay algebraically

predict a larger pattern-giving parameter region for some fixed standard deviation

than those decaying exponentially under all the different assumptions taken on C

in this chapter, if the dispersal kernel is sufficiently wide. If the kernel is narrow,

the opposite behaviour is observed. Further, the simulations show that Amax for

each individual kernel is decreasing as the width of the kernel is increased if one

assumes that C is constant. This is in accord with the behaviour of the leading

order form (2.17) of the Laplacian kernel. Combining these observations, we can

conclude that the narrower a plant’s seed dispersal is, the more water is required

to avoid the formation of patterns. Nevertheless, field data shows that plants in

semi-arid ecosystems tend to establish narrow dispersal kernels [66, 227]. This is,

however, only a side effect of other adaptations such as seed containers protecting

seeds from flooding and predation [66]. Simulations show that short range dispersal

yields a higher mean biomass in those ecosystems than a long distance spread of

seeds [156]. Combining this with the results of this chapter shows that the shorten-

ing of dispersal ranges of plants in semi-arid environments increases their tendency

to self-organise into patterns.
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If one assumes that the width of the dispersal kernel is fixed and plant’s dispersal

rate is changed, (2.17) shows that, under the assumption that the dispersal of seeds

fits the Laplacian kernel, the more the species invests in its dispersal rate, the less

water it requires to form a homogeneous vegetation cover. For the other dispersal

kernels we have considered, the same behaviour is shown in our simulations. Those

simulations also show the same trend regarding the type of decay of the dispersal

kernels as the simulations in the case of fixed C and varying range of dispersal.

For wider dispersal kernels, those plants whose kernel functions decay algebraically

have a higher tendency to form patterns than those plants dispersing their seeds

according to an exponentially decaying kernel. For sufficiently narrow kernels, the

opposite observation can be made.

The final choice of C assumes that it is correlated with the standard deviation

of the dispersal kernel as C = 2/σ(a)2. This choice is of particular significance

because it leads to the local Klausmeier model being a limiting case of the nonlocal

model using either the Laplacian or the Gaussian kernel. This allows us to compare

our results to the corresponding results obtained for the local model by [191]. This

choice is motivated purely mathematically and we are not aware of any evidence

that the dispersal coefficient C is correlated with the seed distribution range in such

a way. However, experiments have shown that plants’ rate of dispersal increases in

semi-arid environments [6], e.g. by the production of more but smaller seeds [230] as

well as that plants develop short range dispersal of seeds [66, 227]. The analysis of

the previous two cases has shown that an increase in the dispersal coefficient reduces

the critical level of rainfall required to form a homogeneous vegetation cover, while

the establishment of a narrow dispersal kernel increases this threshold. Therefore,

this could be seen as an evolutionary trade-off.

The leading order results on quantities such as Amax or the wavelength, obtained

in Sections 2.3 and 2.4, resemble the limiting behaviour of this case. Apart from the

limiting case, the results for the nonlocal model using the Laplacian kernel behave

monotonically as the width of the dispersal kernel is changed. In particular, the

results on the loci of the Hopf bifurcation and the maximum rainfall parameter

giving patterns allow us to make the crucial observation that the nonlocal model

predicts a larger range of parameters supporting pattern formation. Our results

further show that the size of the parameter region giving patterns is larger for

a wider dispersal kernel, which makes the dispersal term less influential, i.e. it

decreases the plant’s dispersal rate, due to the assumption C = a2. This is most

strikingly illustrated by Figure 2.2b, which shows the increase of this region as the

scale parameter a of the kernel decreases. Under this assumption on the dispersal

rate and the kernel width, our simulation results show that establishing short range

dispersal increases plants’ ability to form a homogeneous vegetation cover. This is
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Figure 2.9: Contour plot of Amax. This plot shows the contours of (2.17) as solid
lines with the colours indicating the level of Amax. The red dotted line is the sug-
gested trade-off C = 2/σ(a)2, which was mathematically motivated by the limiting
behaviour of the convolution integral

further illustrated by Figure 2.9, which shows shows the contours of Amax and the

suggested evolutionary trade-off C = 2/σ(a)2. The latter crosses the contours as

the standard deviation is varied and thereby shows that an increase in kernel width

yields an increase in the maximum rainfall parameter supporting pattern formation.

In this chapter we have also investigated the distance between the striped ve-

getation patches to leading order in ν. It is of immense importance to have an

understanding of the wavelength of the patterns as it might give an indication of

whether the ecosystem is close to complete desertification. The results of this study

show that the wavelength monotonically increases as the amount of rainfall de-

creases, before reaching a critical threshold, where patterns disappear and complete

desertification takes over. While it is important to emphasise again that the sim-

plifications assumed in deducing the Klausmeier model do not allow us to gain any

quantitative information, we have shown how the wavelength is affected by changes

in the width of the dispersal kernel or in the plant’s dispersal rate. Interestingly, in

the case of C = 2/σ(a)2, the wavelength predicted by the nonlocal model using the

Laplacian kernel does not differ much from the wavelength predicted by the local

model, even for wide dispersal kernels (see the y-axis in Figure 2.1b). This suggests

that one could make predictions on the possibility of desertification without having

any information on the range of plant dispersal under the assumption that the dis-

persal coefficient C is correlated with the standard deviation of the dispersal kernel

in such a way.
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The pattern solutions of the Klausmeier model fundamentally depend on how

the migration speed c scales with the parameter ν, describing the rate of the water

flow downhill. In this chapter we have only considered the case c = Os(1) and

the patterns forming in the vicinity of the Turing-Hopf bifurcation. For the local

Klausmeier model results have been obtained for a wide range of migration speeds

[184, 186, 190–192]. One natural extension of this work would be to do a similar

comprehensive study of the whole parameter range for the nonlocal model. This

would give insights into the existence and form of patterns away from the bifurcation

point.

Another natural area for future work would be to consider other more realistic

models for vegetation patterns. A number of such models and their underlying

mechanisms and scale dependent feedbacks are reviewed by [129]. Some of these

models already include nonlocal dispersal via convolution integrals [16, 156, 157],

and in others [86, 163] such a term could be added in place of plant diffusion.

While these as well as the model considered in this chapter assume an isotropic

dispersal of plants, this simplification can be removed by including either advection

of plants [169, 210] or an asymmetric dispersal kernel [210]. Similar to the relation

between diffusion and the convolution with a symmetric kernel, both the advection

and the diffusion terms arise from the convolution term with an asymmetric kernel.

In this case the coefficient of the first order derivative in (2.3) is non-zero. Finally,

some models use a nonlocal term for the water uptake and thus also for plant

growth, reflecting the extensive root networks of plants in semi-arid regions [74, 75].

Investigation of these models using an approach similar to that in the current study

would be of interest but would be particularly challenging because of the added

complexity.
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Chapter 3

An integrodifference model for vegetation patterns in

semi-arid environments with seasonality

The contents of this chapter have been submitted to a journal and are currently

under review. A preprint is available [62].
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Abstract

Vegetation patterns are a characteristic feature of semi-deserts occurring

on all continents except Antarctica. In some semi-arid regions, the climate is

characterised by seasonality, which yields a synchronisation of seed dispersal

with the dry season or the beginning of the wet season. We reformulate

the Klausmeier model, a reaction-advection-diffusion system that describes

the plant-water dynamics in semi-arid environments, as an integrodifference

model to account for the temporal separation of plant growth processes during

the wet season and seed dispersal processes during the dry season. The model

further accounts for nonlocal processes involved in the dispersal of seeds. Our

analysis focusses on the onset of spatial patterns. The Klausmeier partial

differential equations (PDE) model is is linked to the integrodifference model

in an appropriate limit, which yields a control parameter for the temporal

separation of seed dispersal events. We find that the conditions for pattern

onset in the integrodifference model are equivalent to those for the continuous

PDE model and hence independent of the time between seed dispersal events.

We thus conclude that in the context of seed dispersal, a PDE model provides

a sufficiently accurate description, even if the environment is seasonal. This
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emphasises the validity of results that have previously been obtained for the

PDE model. Further, we numerically investigate the effects of changes to seed

dispersal behaviour on the onset of patterns. We find that long-range seed

dispersal inhibits the formation of spatial patterns and that the seed dispersal

kernel’s decay at infinity is a significant regulator of patterning.

3.2 Introduction

Vegetation patterns are a ubiquitous feature of ecosystems in semi-arid climate

zones. Occurrences of such mosaics of plants and bare soil have been reported from

all continents except Antarctica, including the African Sahel [48] and the Horn of

Africa [79], Western Australia [72], northern Chile [68], Israel [182], the Chihuahuan

Desert in North America [48] and Southeastern Spain [108]. A detailed understand-

ing of the evolution of vegetation patterns is of considerable importance as they

hold valuable information on the health of ecosystems. For example, changes to a

pattern’s properties such as its wavelength, its recovery time from perturbations, or

the area fraction covered by biomass can act as early warning signals of desertifica-

tion [39, 45, 78, 96, 164, 170, 246]. Desertification processes are a major threat to

economies in semi-deserts as agriculture provides a significant contribution to GDP

[218]. For example, the livestock sector, which depends in part on animals grazing

on spatially patterned vegetation, accounts for 20% of GDP in Chad and involves

40% of its population [51, 219].

A number of feedback mechanisms may be involved in the pattern formation

process (see [131] for a review), but it is widely agreed that a central mechanism is

the vegetation-infiltration feedback loop, which results in a redistribution of water

towards areas of high biomass. On bare soil, the formation of physical and biological

soil crusts inhibits water infiltration into the soil [65]. Thus, water run-off towards

existing vegetation patches occurs. The enhancement of environmental conditions

in these sinks for the limiting resource drives further plant growth and thus closes

the feedback loop [209].

Dryland plants have developed a range of seed production and dispersal strategies

to cope with the environmental stress in their habitats [66, 227]. One such mech-

anism, commonly observed in water-controlled ecosystems, is ombrohydrochory, the

dispersal of seeds caused by an opening of the seed container due to contact with

water [146, 150, 227]. One particular form, exhibited by members of the Aizoaceae

family in semi-arid regions of the Sahel, Australia and South America, is ballistic

dispersal, which uses the kinetic energy of raindrops to expulse the plants’ seeds

[70, 150]. Some semi-arid environments such as those in the Mediterranean are

characterised by seasonal fluctuations in their environmental conditions and in par-
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ticular in their precipitation patterns [148]. In combination with processes that allow

plants to store diaspores during periods of drought, ombrohydrochory yields a syn-

chronisation of seed dispersal with the beginning of the wet season in such seasonal

environments. This synchronisation has, for example, been reported in Mesembry-

anthemum crystallinum and Mesembryanthemum nodiflorum in Southeastern Spain

[146]. If seed dispersal strategies different from ombrohydrochory are dominant,

most species disperse their seeds during the dry season [146, 181].

The seasonal synchronisation of seed dispersal splits the annual life-cycle of a

plant population into two distinct stages. During the wet season, seeds germinate,

new seedlings emerge and adult plants increase their biomass, but no spatial move-

ment takes place. Seed dispersal only occurs during, or at the end of the dry season,

while growth processes are dormant [14]. By contrast, most mathematical models for

dryland vegetation patterns consist of partial differential equations and thus assume

that seed dispersal occurs continuously in time. A widely used approach to account

for the temporal structure of the annual life cycle is the use of integrodifference

equations. This splits the system into 2 distinct, non-overlapping phases, which are

both described as discrete, instantaneous processes: a growth phase during which

dispersal processes are either not present or negligible and a dispersal phase during

which no growth occurs. The application of integrodifference equations to biological

and ecological systems in which spatial dispersal plays a significant role was in part

pioneered by Kot and Schaffer [102], and has become a well-established tool in the

description of biological and ecological systems since then (e.g. [33, 143, 144, 147,

155]).

The spatial and temporal scales associated with the evolution of vegetation pat-

terns do not allow their recreation in laboratory settings. Instead, a range of math-

ematical models have been proposed to address different aspects of the pattern

dynamics [21, 247]. A significant amount of modelling work is based on systems of

partial differential equations, most notably by Gilad et al. [74], HilleRisLambers

and Rietkerk et al. [86, 163] and Klausmeier [99]. The reaction-advection-diffusion

Klausmeier model [99] is a deliberately basic description of dryland ecosystems based

on the vegetation-infiltration feedback loop. Its relative simplicity provides a rich

framework for model analyses and extensions (e.g. [20, 34, 61, 63, 184, 186, 190–

192, 199, 221]). The recent development of new remote sensing technology, us-

ing temporal sequences of satellite images, allows for comparisons between model

predictions and field data [10, 72].

In the Klausmeier model, seed dispersal is modelled by a diffusion term. In real-

ity, the dispersal of seeds is affected by nonlocal processes, such as ballistic dispersal

or long range dispersal (e.g. via mammals or wind) [25, 156]. The Klausmeier model

has been extended to account for such nonlocal processes in Chapter 2 and [20, 61]
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and a similar approach has been applied to other models for dryland vegetation [16,

156, 157]. Integrodifference systems also provide a description of nonlocal dispersal

effects through a convolution of the plant density with a kernel function. The ker-

nel function is a probability density function describing the average distribution of

seeds dispersed from a single plant. The dispersal kernel’s properties (in particular

its shape and standard deviation) depend on both plant species and environmental

conditions [25].

In this chapter we address the significance of seed dispersal synchronisation and

its temporal separation from growth processes in seasonal dryland environments. To

do so, we introduce an integrodifference model describing the plant-water dynamics

in semi-arid ecosystems in Section 3.3. We base our model on the Klausmeier model,

to compare our results to previous model analyses of models with no temporal

structure. To aid comparisons to the PDE model, we review the most relevant

results for the Klausmeier model in Section 3.3. Even though an integrodifference

model cannot explicitly take into account the length of the plant growth stage, a

convergence result (Proposition 3.3.1) yields a control parameter for the temporal

separation of seed dispersal events through an appropriate parameter setting. In

Section 3.4 we focus on this special case and perform a linear stability analysis to

determine a condition for pattern onset in the model and investigate this condition

under variations in the growth season length. The analytical derivation of this

condition relies on a specific (but nevertheless biologically relevant) choice of the

dispersal kernels. To relax this assumption we perform numerical simulations in

Section 3.5 to determine the parameter region in which pattern onset occurs for

other biologically relevant dispersal kernels. Finally, we discuss our results in Section

3.6.

3.3 The Models

In this section we introduce the integrodifference model which we use to investigate

the effects of seasonal synchronisation of seed dispersal on the onset of vegetation

patterns in semi-arid environments. The model is based on the reaction-advection-

diffusion model by Klausmeier [99] and to facilitate the comparison of our results

on the discrete model to that of the time-continuous model, we start by reviewing

relevant results for the Klausmeier model. We relate the models through a consist-

ency result that shows that the Klausmeier PDE model can be obtained from the

integrodifference model in an appropriate limit.
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3.3.1 Klausmeier Model

One of the well-established models describing vegetation patterns in semi-arid envir-

onments is the Klausmeier model [99]. It reduces the plant-water dynamics to a small

set of basic processes (rainfall, plant mortality, evaporation/drainage, vegetation-

infiltration feedback and spatial dispersal). The relative simplicity of this modelling

approach provides a framework for a rich mathematical analysis (e.g. [184–186,

190–192, 194, 199, 221]). Suitably nondimensionalised [99, 185], the model is

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant mortality︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
, (3.1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

and drainage

− u2w︸︷︷︸
water consumption

by plants

+ ν
∂w

∂x︸︷︷︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water diffusion

. (3.1b)

Here u(x, t) denotes the plant density, w(x, t) the water density, x ∈ R the space

domain where x is increasing in the uphill direction and t > 0 the time. Originally,

the model only focussed on a sloped spatial domain, but the addition of a water

diffusion term to account for the possibility of a description on flat terrain is a

well established addition [95, 199, 225, 247]. To emphasise on the description of

seed dispersal as a local process, we refer to this model as the “local Klausmeier

model” throughout the chapter. Water input to the system is assumed to occur at a

constant rate, evaporation and drainage effects are proportional to the water density

[167, 171] and the plant mortality rate is density-independent. The nonlinearity in

the description of water uptake and plant growth processes arises due to a soil

modification by plants. The term is the product of the density of the consumer u

and of the available resource uw, the amount of water that is able to infiltrate into

soil layers where plant roots consume water. The dependence on the plant density u

in the latter term occurs due to a positive correlation between the plant density and

the soil surface’s permeability [38, 165, 222]. Finally, plant growth is assumed to be

proportional to the amount of consumed water [167, 171]. The parameters A, B, ν

and d are combinations of different dimensional parameters but can be interpreted

as rainfall, plant loss, the slope and water diffusion, respectively.

In a previous chapter (Chapter 2) [61] we have introduced nonlocal seed dispersal

effects to the model by replacing the plant diffusion term by a convolution of a

dispersal kernel (a probability density function) φ and the plant density u. The
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resulting model is referred to as the “nonlocal Klausmeier model” and is

∂u

∂t
= u2w −Bu+ C (φ(·) ∗ u(·, t)− u(x, t)) , (3.2a)

∂w

∂t
= A− w − u2w + ν

∂w

∂x
+ d

∂2w

∂x2
. (3.2b)

The additional parameters C and a represent the rate of plant dispersal and re-

ciprocal width of the dispersal kernel, respectively. Note that the convolution

(φ ∗ u)(x, t) accounts for all plant biomass dispersed to the space point x, including

the fraction of biomass that is not dispersed. The final term in (3.2a) ensures that

the total biomass over the whole domain remains unchanged by the seed dispersal

term. The nonlocal model (3.2) and the local model (3.1) are related through a

convergence result. If the dispersal kernel φ is decaying exponentially as |x|→ ∞,

then the local model (3.1) can be obtained from the nonlocal model (3.2) in the

limit C →∞ and σ → 0 with C = 2/σ2, where σ denotes the standard deviation of

φ [61] (Chapter 2).

Linear stability analysis of both the local and the nonlocal Klausmeier model

with the Laplace kernel

φ(x) =
a

2
e−a|x|, a > 0, x ∈ R. (3.3)

provides analytically derived conditions for pattern onset to occur in the system.

On flat ground, i.e. ν = 0, Turing-type patterns form due to a diffusion-driven

instability, i.e. there exists a threshold dc > 0 on the diffusion coefficient such that

an instability occurs for all d > dc. In the local model (3.1), the threshold is

dc(A,B) =
8B
√
−A2 + A

√
A2 − 4B2 + 4B2 − 2A2 + 2A

√
A2 − 4B2 + 16B2

B
(
A−
√
A2 − 4B2

)2 .

(3.4)

A corresponding threshold d̃c(A,B,C, a) for the nonlocal model (3.2) with the

Laplace kernel (3.3) can be derived explicitly, but it omitted due to its algebraic

complexity.

On sloped ground (ν 6= 0) pattern onset has been studied close to a Turing-Hopf

bifurcation, which is characterised by an upper bound on the rainfall parameter A

that has been derived analytically valid to leading order in ν as ν → ∞ for both

models in Chapter 2 and [61, 191]. The calculation of this upper bound on the

precipitation parameter for the nonlocal model with the Laplace kernel shows that

long range dispersal of seeds inhibits the formation of patterns by decreasing the
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size of the parameter region that supports the onset of patterns. On flat ground

an increase of the dispersal kernel’s standard deviation causes an increase in the

threshold on the diffusion coefficient, while on sloped ground an increase in the

dispersal kernel’s width inhibits the formation of patterns by decreasing the upper

bound on the rainfall parameter.

The analytical derivation of pattern onset conditions in the nonlocal model is

facilitated by the simple algebraic form of the Laplace kernel’s Fourier transform and

the associated polynomial structure of the dispersion relation in the linear stability

analysis. For other biologically relevant seed dispersal kernels, conditions for pattern

onset are not analytically tractable. Numerical simulations, however, confirm the

qualitative trends obtained for the model with the Laplace kernel. Simulations

further suggest that the dispersal kernel’s decay at infinity has an influence on

the rainfall threshold. For narrow dispersal kernels, those that account for more

rare long-range dispersal events (algebraic decay rather than exponential) have an

inhibitory effect on the formation of patterns, while for sufficiently wide kernels

those that decay algebraically at infinity promote pattern formation compared to

exponentially decaying kernels.

3.3.2 Integrodifference Model

Integrodifference models are a common type of model widely used in the descrip-

tion of systems in which dispersal processes are temporally separated from other

dynamics such as growth/birth and decay/death. To account for the separation

of plant growth and seed dispersal stages in dryland ecosystems, we propose the

integrodifference model

un+1(x) = Cφ ∗ f(un, wn), (3.5a)

wn+1(x) = Dφ1 ∗ g(un, wn), (3.5b)

where

f (u,w) = u2w −Bu+
1

C
u,

g(u,w) = A− u2w − w +
1

D
w.

Here un(x) denotes the plant density, wn(x) the water density after 2n, n ∈ N seasons

and location x ∈ R, where x increases in the uphill direction. The formulation of the

model splits the processes involved into two phases: a growth and evolution phase

described by the functions f(u,w) and g(u,w) during which no dispersal occurs, and
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a dispersal phase modelled as a convolution of the evolved densities with dispersal

kernels. As in the nonlocal Klausmeier model (3.2), the plant dispersal kernel φ is

symmetric and represents isotropic dispersal of plants. To model the flow of water

downhill, the water dispersal kernel φ1 is in general asymmetric with mean µφ1 ≤ 0.

The special case of a symmetric kernel φ1 corresponds to the model on flat ground,

which is the main aspect of the study in this chapter. The model is based on the

Klausmeier models (3.2) and (3.1) and thus the functions f(u,w) and g(u,w) consist

of the terms describing the rate of change in the original model, appropriately scaled

by the coefficients C and D to reflect the time between steps in the discrete model,

added to the existing densities.

As the integrodifference model (3.5) arises directly from the local Klausmeier

model (3.1), the two models can be linked through a consistency result in an ap-

propriate limit which shows that the integrodifference model (3.5) tends to the local

Klausmeier model (3.1) as T → 0. To show this, we consider the parameter setting

C = T, σ2
φ = 2T, D = T, µφ1 = −νT, σ̃2

φ1
= 2dT, (3.6)

where µ and σ denote the mean and standard deviation of the respective kernels and

σ̃2
φ1

=
∫∞
−∞ φ1(x)x2dx, the second raw moment of the kernel function φ1. Further,

we define operators P, PT : C∞(R× [0,∞), [0,∞)2)→ C∞(R× [0,∞), [0,∞)2) by

Pv(x, t) =
∂v

∂t
(x, t)− Γv(x, t)− h1(v(x, t)), (3.7)

for any function v(x, t) = (u(x, t), w(x, t)) ∈ C∞(R× [0,∞), [0,∞)2), where

Γ = diag

(
∂2

∂x2
, ν

∂

∂x
+ d

∂2

∂x2

)
, h1 (v) =

(
u2w −Bu

A− u2w − w

)
,

and

PTv(x, t) =
1

T
(v(x, t+ T )− h2(v(x, t))) , (3.8)

where

h2 (v(x, t)) =

(
−Cφ(·) ∗ f(u(·, t), w(·, t))
−Dφ1(·) ∗ g(u(·, t), w(·, t))

)
.

Note that the operator P arises from the local Klausmeier model (3.1), because

Pv = 0 for any v that satisfies (3.1). Similarly, PT represents the integrodifference

model (3.5), because a sequence vn(x) = v(x, nT ) satisfies (3.5) if PTvn = 0 for

all n ∈ N. Utilising this reformulation of both models, it is possible to show the
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following result.

Proposition 3.3.1. Consider the parameter setting (3.6) and let the kernel func-

tions φ and φ1 have finite moments of all orders and decay exponentially as |x|→ ∞.

Then the integrodifference model (3.5) is consistent with the local Klausmeier model

(3.1), i.e.

Pv − PTv → 0 as T → 0+,

for any v ∈ C∞(R× [0,∞), [0,∞)2).

In other words, the model equations (3.5) converge to the model equations (3.1)

as T → 0+. The notion of consistency is widely used in the field of numerical

analysis, and crucially it does not imply convergence of model solutions. While we

are unable to construct an argument to prove convergence, numerical simulations

suggest that solutions of the integrodifference model (3.5) converge to solutions of

the local Klausmeier model (3.1) in the parameter setting (3.6) as T → 0+ (Fig.

3.2).

On sloped ground Prop. 3.3.1 requires that ν = o(T−1), so that Tν → 0 as

T → 0+ and ν →∞, to facilitate any asymptotic analysis in ν similar to that of the

local Klausmeier model [184–186, 190–192]. On flat ground, φ1 is symmetric and

thus µφ1 = 0 and σ̃φ1 coincides with the kernel’s standard deviation σφ1 .

The parameter T can be interpreted as the time between separate dispersal events

and the scalings (3.6) are thus the main focus of the model’s analysis in Section 3.4.

While the time between two seed dispersal events in a seasonal environment is usually

fixed, we are interested in variations of T as this parameter establishes a connection

between the local Klausmeier model (3.1) and the integrodifference model (3.5). In

particular, as T → 0+ in the model, the length of each season tends to zero. As a

consequence, this limit corresponds to the disappearance of any seasonality in the

model and all processes are assumed to occur continuously in time, as, for example,

in the Klausmeier model (3.1).

One kernel function satisfying the conditions in Prop. 3.3.1 is the Laplacian

kernel (3.3). We define the corresponding asymmetric Laplace kernel by φ1(x) =

Ne−a2x for x ≥ 0 and φ1(x) = Ne(a2−a1)x for x < 0, where N = (a2−a1)a2/(2a2−a1)

and a2 > a1 > 0. The parameter a1 controls the extent of the asymmetry of the

kernel function and a1 = 0 yields the symmetric Laplace kernel (3.3). The model

with this particular kernel function is studied in some detail in this chapter as the

Fourier transform of the symmetric Laplacian kernel φ̂(k) = a2/(a2 + k2) provides a

significant simplification in the analysis of pattern onset.
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Proof of Proposition 3.3.1. Firstly, we show that

PTv(x, t) =
v(x, t+ T )− v(x, t)

T
− Γv(x, t)− h1(v(x, t)) +O

(
T 2
)
. (3.9)

To this end, we define φ(x) = σ−1
φ ϕ(σ−1

φ x) and φ1(x) = σ̃−1
φ1
ϕ1(σ̃−1

φ1
x) Under

the changes of variables y = x − σφz and y = x − σ̃φ1z, respectively, PTv =

((PTv)1, (PTv)2) satisfies

T (PTv)1 = u(x, t+ T )− C
∫ ∞
−∞

ϕ(z)f (u (x− σφz, t) , w (x− σφz, t)) dz, (3.10a)

T (PTv)2 = w(x, t+ T )−D
∫ ∞
−∞

ϕ1(z)g (u (x− σ̃φ1z, t) , w (x− σ̃φ1z, t)) dz.

(3.10b)

Due to the parameter setting (3.6), small values of T correspond to small values

of σφ and σ̃φ1 Hence, to investigate the system’s behaviour for T � 1, consider the

Taylor expansions of u(x − σφz, t), w(x − σφz, t), u(x − σ̃φ1z, t) and w(x − σ̃φ1z, t)
about x, which give

f (u (x− σφz, t) , w (x− σφz, t))

= u(x, t)2w(x, t) +

(
1

C
−B

)
u(x, t)

− σφz
(
u(x, t)2wx(x, t) +

(
1

C
−B

)
ux(x, t) + 2u(x, t)ux(x, t)w(x, t)

)

+ σ2
φz

2

(
1

2
u(x, t)2wxx(x, t) + ux(x, t)

2w(x, t) +
1

2

(
1

C
−B

)
uxx(x, t)

+u(x, t)uxx(x, t)w(x, t) + 2u(x, t)ux(x, t)wx(x, t)) +O
(
σ3
φ

)
, (3.11)
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and similarly

g (u (x− σ̃φ1z) , w (x− σ̃φ1z))

= A− u(x, t)2w(x, t) +

(
1

D
− 1

)
w(x, t)

− σ̃φ1z
(
−u(x, t)2wx(x, t) +

(
1

D
− 1

)
wx(x, t)− 2u(x, t)ux(x, t)w(x, t)

)

+ σ̃2
φ1
z2

(
−ux(x, t)2w(x, t)− 1

2
u(x, t)2wxx(x, t) +

1

2

(
1

D
− 1

)
wxx(x, t)

−u(x, t)uxx(x, t)w(x, t)− 2u(x, t)ux(x, t)wx(x, t)) +O
(
σ̃3
φ1

)
, (3.12)

where the subscripts of u and w denote partial differentiation. Substitution of this

into (3.10) and term-wise integration using Watson’s Lemma (e.g. [134]) gives

T (PTv)1 = u(x, t+ T )− C
(
u(x, t)2w(x, t) +

(
1

C
−B

)
u(x, t)

+

(
u(x, t)2wxx(x, t) + 2(ux(x, t))

2w(x, t) +

(
1

C
−B

)
uxx(x, t)

+2u(x, t)uxx(x, t)w(x, t) + 4u(x, t)ux(x, t)wx(x, t))σ
2
φ

∫ ∞
−∞

ϕ(z)z2dz +O
(
σ3
φ

))
,

42



Chapter 3: Patterns in semi-arid environments with seasonality

and

T (PTv)2 = w(x, t+ T )

−D
(

2

(
A− u(x, t)2w(x, t) +

(
1

D
− 1

)
w(x, t)

) ∫ ∞
−∞

ϕ1(z)dz

+

(
u(x, t)2wx(x, t)−

(
1

D
− 1

)
wx(x, t) + 2u(x, t)ux(x, t)w(x, t)

)

σ̃φ1

∫ ∞
−∞

ϕ1(z)zdz

+

(
−2(ux(x, t))

2w(x, t)− u(x, t)2wxx(x, t) +

(
1

D
− 1

)
wxx(x, t)

−2u(x, t)uxx(x, t)w(x, t)− 4u(x, t)ux(x, t)wx(x, t))
σ̃2
φ1

2

∫ ∞
−∞

ϕ1(z)z2dz

+O
(
σ̃3
φ1

))
.

Using that ϕ(x) = σφφ(σφx), ϕ1(x) = σ̃φ1φ1(σ̃φ1x), and the definition of the mo-

ments of a probability distribution give

T (PTv)1 = u(x, t+ T )− C
(
u(x, t)2w(x, t) +

(
1

C
−B

)
u(x, t) +

σ2
φ

2C
uxx(x, t)

+σ2
φ

(
1

2
u(x, t)2wxx(x, t) + (ux(x, t))

2w(x, t)− 1

2
Buxx(x, t)

+u(x, t)uxx(x, t)w(x, t) + 2u(x, t)ux(x, t)wx(x, t)) +O
(
σ3
φ

))
,
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and

T (PTv)2 = w(x, t+ T )−D
(
A− u(x, t)2w(x, t) +

(
1

D
− 1

)
w(x, t)

−µφ1
D
wx(x, t) +

σ̃2
φ1

2D
wxx(x, t) + µφ1

(
u(x, t)2wx(x, t) + wx(x, t)

+2u(x, t)ux(x, t)w(x, t)) + σ̃2
φ1

(
−(ux(x, t))

2w(x, t)− 1

2
u(x, t)2wxx(x, t)

−1

2
wxx(x, t)− u(x, t)uxx(x, t)w(x, t)− 2u(x, t)ux(x, t)wx(x, t)

)
+O

(
σ̃3
φ1

))
.

Applying (3.6) yields

T (PTv)1 = u(x, t+ T )

−
(
u(x, t) + T

(
u(x, t)2w(x, t)−Bu(x, t) + uxx(x, t)

))
+O

(
T 2
)
,

and

T (PTv)2 = w(x, t+ T )

−
(
w(x, t) + T

(
A− u(x, t)2w(x, t)− w(x, t) + νwx(x, t) + dwxx(x, t)

))
+O

(
T 2
)
,

which shows (3.9).

The Taylor expansions u(x, t+T ) = u(x, t)+Tut(x, t)+O(T 2) and w(x, t+T ) =

w(x, t) + Twt(x, t) +O(T 2) yield

PTv(x, t) =
∂v

∂t
(x, t)− Γv(x, t)− h1(v(x, t)) +O

(
T 2
)
,

and thus

Pv − PTv = O
(
T 2
)
,

which tends to zero as T → 0.
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3.4 Linear Stability Analysis

A common approach to study the onset of spatial patterns in a model is linear sta-

bility analysis. Spatial patterns occur if a steady state that is stable to spatially

homogeneous perturbations becomes unstable if a spatially heterogeneous perturb-

ation is introduced. In this section we show that such a linear stability analysis of

the integrodifference model (3.5) on flat ground with the Laplacian kernels in the

parameter setting (3.6) yields a condition for pattern onset that is equivalent to

the corresponding condition for the local Klausmeier model (3.1). This implies that

pattern onset is independent of the parameter T , the temporal separation of seed

dispersal events.

The steady states of (3.5) are identical with those of the Klausmeier models (3.1)

and (3.2), i.e.

(u1, w1) = (0, A) , (u2, w2) =

(
2B

A−
√
A2 − 4B2

,
A−
√
A2 − 4B2

2

)
,

(u3, w3) =

(
2B

A+
√
A2 − 4B2

,
A+
√
A2 − 4B2

2

)
.

Existence of (u2, w2) and (u3, w3) requires A > Amin := 2B. The steady states are

independent of C, D and the dispersal widths a, a1 and a2 and are thus independent

of frequency changes to the temporal intermittency when using the scalings (3.6).

For the Klausmeier models (u1, w1) and (u2, w2) are stable to spatially homogeneous

perturbations, while (u3, w3) is unstable to spatially homogeneous perturbations in

the biologically relevant parameter region B < 2 [61, 99, 185]. Preservation of this

structure of the steady states in the integrodifference model (3.5) is only achieved

in a certain parameter region.

Proposition 3.4.1. If

D = `D, ` < 1, C =
`1D

B(m− `1D)
, m > 2, `1 < 1, (3.13)

where

D =
2
(
A2 − A

√
A2 − 4B2 − 2B2

)
A2 − A

√
A2 − 4B2

, (3.14)

then (u1, w1) and (u2, w2) are stable to spatially homogeneous perturbations, and

(u3, w3) is unstable to spatially homogeneous perturbations.

This condition is sufficient but not necessary. Outside this region further restric-

tions on the rainfall parameter A can be imposed to guarantee conservation of the
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steady state structure. In the limiting case (3.6) such a restriction on the rainfall

parameter cannot be avoided. The following condition ensures that (3.13) holds in

the limiting case (3.6).

Corollary 3.4.2. If

A2 < A2
+ := min

{
4B2

(2− T )T
,
B(BT + 1)2

T

}
, T <

1

2
, B < 2, (3.15)

in (3.5) with C = D = T , then (u1, w1) and (u2, w2) are stable to spatially homogen-

eous perturbations, and (u3, w3) is unstable to spatially homogeneous perturbations.

In the limit T → 0+ this becomes the whole A-B parameter region considered

for the continuous-time Klausmeier models, providing a reasonable framework for

a comparison of the two models. The upper bounds on T and A do, however, in-

troduce a significant restriction on the model as no arbitrarily large time between

dispersal events or large precipitation volumes A can be considered. In this, as

well as the parameter region given by (3.13), the plant density un(x) and the water

density wn(x) remain positive for initial conditions close to the steady states. This

is sufficient for the linear stability analysis and simulations that follow. In the para-

meter region in which (u2, w2) is unstable, four different behaviours of the system’s

solution can be observed; (i) convergence to the desert steady state, (ii) divergence,

(iii) a chaotic solution or (iv) a periodic solution for which period doubling occurs

as T is increased. However, these different behaviours can yield negative densities

of the system’s quantities and are thus not considered further in this study.

Spatial patterns of (3.5) arise if the steady state (u,w) := (u2, w2), which is

stable to spatially homogeneous perturbations, becomes unstable if a spatially het-

erogeneous perturbation is introduced.

Proposition 3.4.3. The steady state (u,w) is stable to spatially heterogeneous per-

turbations if |λ(k)|< 1 for both eigenvalues of the Jacobian

J =

(
Cφ̂(k)α Cφ̂(k)β

Dφ̂1(k)γ Dφ̂1(k)δ

)
, (3.16)
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for all k > 0, where

α = fu(u,w) =
BC + 1

C
,

β = fw(u,w) =
4B2(

A−
√
A2 − 4B2

)2 , γ = gu(u,w) = −2B,

δ = gw(u,w) = −
2
(
A2D − AD

√
A2 − 4B2 − A2 + A

√
A2 − 4B2 + 2B2

)
D
(
A−
√
A2 − 4B2

)2 .

(3.17)

Due to the asymmetry of φ1 some of the entries of the Jacobian (3.16) are

complex-valued. A significant simplification can therefore be achieved by considering

the integrodifference model (3.5) on flat ground. This corresponds to a1 = 0 in φ1.

As a consequence, the Jury conditions (see e.g. [142]) can be used to determine the

steady state’s stability to spatially heterogeneous perturbations. To study this in

more detail, and in particular to show that the model does not provide information

on effects the temporal separation of seed dispersal events, we focus on the limiting

case (3.6) and the Laplacian kernel (3.3).

Proposition 3.4.4. The steady state (u,w) of the integrodifference model (3.5)

under the scalings (3.6) on flat ground with the Laplacian kernels (3.3) is unstable

to spatially heterogeneous perturbations if

1 + det(J)− |tr(J)|< 0, for some k > 0, (3.18)

where J is the Jacobian given in Proposition 3.4.3 with a1 = 0.

In other words, Proposition 3.4.4 provides a sufficient condition for spatial pat-

terns to occur. The following proposition shows that (3.18) is equivalent to the

stability condition (3.4) of (u,w) in the local Klausmeier model. In other words, a

diffusion driven instability causes the occurrence of spatial patterns in the integrodif-

ference model, i.e. given a level of rainfall A, an instability occurs for d > dc(A,B),

where dc(A,B) is given in (3.4).

Proposition 3.4.5. The steady state (u,w) of the integrodifference model (3.5)

under the scalings (3.6) on flat ground with the Laplacian kernels (3.3) is unstable

to spatially heterogeneous perturbations if d > dc(A,B), where the threshold dc is

identical with the corresponding threshold (3.4) for the local Klausmeier model.

The condition’s independence of T yields that the integrodifference model does

not provide any information on the effects of the temporal separation of seed dis-

persal events on the onset of spatial patterns. The equivalence of the condition
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to that of the local Klausmeier model follows directly from the condition’s inde-

pendence of T and Proposition 3.3.1, which shows that the integrodifference model

converges to the local Klausmeier model as T → 0+. Thus for sufficiently small val-

ues of T , Proposition 3.4.5 does indeed provide the exact same information as the

diffusion threshold obtained for the local Klausmeier model. For larger T the model

does not provide any information on the transition between uniform and patterned

vegetation as the decrease in the upper bound A+ on the rainfall parameter reduces

the size of the rainfall interval for which the derivation of dc is valid.

Proof of Proposition 3.4.1. Stability of a steady state (u,w) is determined by the

Jury conditions applied to the Jacobian

J =

(
C(2uw −B) + 1 Cu2

−2Duw −D(u2 + 1) + 1

)
.

The steady state (u3, w3) is unstable in the whole parameter region, because

1 + det(J)− |tr(J)|= −
2BCD

(
A2 + A

√
A2 − 4B2 − 4B2

)(
A+
√
A2 − 4B2

)2 < 0.

The desert steady state (u1, w1) is monotonically stable if C < B−1 and D < 1.

If 1 < D < 2 or B−1 < C < 2B−1 it is still stable but solutions are oscillating

about (0, A), which is biologically impossible. Finally, the Jury conditions yield that

(u2, w2) is stable to spatially homogeneous perturbations if min{C2, C3} < C < C1,

where

C1 =
AD

(
A−
√
A2 − 4B2

)
B
(
(D − 1)A

(√
A2 − 4B2 − A

)
+ 2B2(2D − 1)

) ,
C2 =

2
(
(D − 2)

(
A
√
A2 − 4B2 − A2

)
− 4B2

)
B
(
(D − 2)

(
A2 − A

√
A2 − 4B2

)
− 4B2(D − 1)

) ,
C3 =

(D − 2)
(
A2 − A

√
A2 − 4B2

)
+ 4B2

B
(
A2 − A

√
A2 − 4B2 − 2B2

) .

Combined, this gives that the steady state structure of the continuous time model

is preserved if

D < 1 and max
{

0,min
{
C2, C3

}}
< C < min

{
1

B
,C1

}
. (3.19)
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If D > 1/2, then min
{

1/B,C1

}
= 1/B, because

C1 −
1

B
= −

2
(
D − 1

2

) (
A2 − A

√
A2 − 4B2 − 2B2

)
B
((
D − 1

2

) (
A2 − A

√
A2 − 4B2 − 4B2

)
−
(
A2 − A

√
A2 − 4B2

)) > 0,

since A2 − A
√
A2 − 4B2 − 2B2 > 0 and A2 − A

√
A2 − 4B2 − 4B2 < 0. Similarly,

if D < 1/2, then min
{

1/B,C1

}
= C1. Further, if D < D (defined in (3.14)), then

max{0,min{C2, C3}} = 0 and similarly, if D > D, then max{0,min{C2, C3}} = C2.

Hence, (3.19) can be simplified by splitting it into different parameter regions.

It becomes (i) C < C1 if D < 1/2 and D < D, (ii) C2 < C < C1 if D < 1/2 and

D < D < 1, (iii) C < 1/B if 1/2 < D < 1 and D < D and (iv) C2 < C < 1/B if

1/2 < D < 1 and D < D < 1. This classification is used below to show that if C

and D are defined as in (3.13), then (3.19) is satisfied in the whole parameter plane

that is considered in the continuous-time PDE models (A > 2B, B < 2). To show

this it is sufficient to show that (i) and (iii) are satisfied because ` < 1. For case

(iii) note that

C =
`1D

B(m− `1D)
<

1

B
⇐⇒ `1D <

m

2
,

which is satisfied since `1D < 1 and m > 2. For case (i) note that

C =
`1D

B(m− `1D)
< C1 ⇐⇒ `1D <

2B2 + (m− 1)
(
A2 − A

√
A2 + 4B2

)
4B2

:= D.

This is always satisfied because `1D < 1 and

D > 1 ⇐⇒ m >
2B2

A2 − A
√
A2 + 4B2

+ 1 := m,

which holds true since m > 2 and

m < 2 ⇐⇒ A2 − A
√
A2 − 2B2 − 2B2 > 0,

which is clearly satisfied.

Proof of Proposition 3.4.3. Linearisation of the model (3.5) about the steady state

(u,w) gives un+1(x) = Cφ(·) ∗ (αun(·) + βwn(·)) and wn+1(x) = Dφ1(·) ∗ (γun(·) +
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δwn(·)). Taking the Fourier transform of both equations yields

ûn+1(k) = Cφ̂(k)(αûn(k) + βŵn(k)),

ŵn+1(k) = Dφ̂1(k)(γûn(k) + δŵn(k)),

where φ̂ and φ̂1 denote the Fourier transforms of the kernels φ, and φ1, respectively.

Under the assumption that ûn(k) and ŵn(k) are proportional to λnũ(k) and λnw̃(k),

respectively, where λ ∈ C denotes the growth rate, the system becomes λũ(k) =

Cφ̂(k)(αũ(k) + βw̃(k)) and λw̃(k) = Dφ̂1(k)(γũ(k) + δw̃(k)), i.e. λ is an eigenvalue

of the Jacobian J .

Proof of Proposition 3.4.4. For an instability to occur, at least on of the Jury condi-

tions det(J) < 1 and 1+det(J)−|tr(J)|> 0 needs to be violated for some wavenum-

ber k > 0. The former condition is satisfied for all k > 0. To show this, note that

that max{det(J)− 1} is at k = 0 because

det(J)− 1 =
α4k

4 + α2k
2 + α0

(dTk2 + 1)
(
A−
√
A2 − 4B2

)2
(Tk2 + 1)

, (3.20)

where

α4 = 2dT 2
(
−A2 + A

√
A2 − 4B2 + 2B2

)
,

α2 = −2T
(
A2 − A

√
A2 − 4B2 − 2B2

)
(d+ 1),

α0 = 2T

((
1

2
B − 1

)(
A2 − A

√
A2 − 4B2

)

+

(
1

2
B − TB

)(
A2 − A

√
A2 − 4B2 − 4B2

))
.

The denominator of (3.20) is clearly positive and increasing for k > 0. Since further

α4 < 0 and α2 < 0, the numerator and thus the whole of (3.20) is decreasing for

k > 0 and it attains its maximum at k = 0. The negativity of (3.20) then follows

from that of α0 which follows from B < 2 and T < 1/2.

Proof of Proposition 3.4.5. Firstly, we note that ∂dc/∂A ≥ 0 for all A ≥ 2B. Hence,

dc attains its minimum on A = 2B, on which it simplifies to dc = 2/B. Since B < 2,

dc > 1. Next, we show that tr(J) > 0. To do this, note that

tr(J) =
β2k

2 + β0

(dTk2 + 1)
(
A−
√
A2 − 4B2

)2
(Tk2 + 1)

> 0,
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for all k > 0, where

β2 = 2
(
A2 − A

√
A2 − 4B2 − 2B2

) (
BT 2d+ T + Td

)
− 2T 2

(
A2 − A

√
A2 − 4B2

)
,

β0 = 2 (BT − T + 2)
(
A2 − A

√
A2 − 4B2 − 2B2

)
.

The denominator is clearly positive and thus the condition for positivity of tr(J) is

β2k
2 +β0 > 0. The left hand side of this is decreasing in A since A2−A

√
A2 − 4B2 is

decreasing in A and the assumptions on B and d, and thus obtains its minimum at

A = A+, where A+ is given in (3.15). If B < 1/(2− T ), then A+ = 4B2/((2− T )T )

and

tr(J)
(√

A+
)
> 0⇐⇒ k2 >

B

1− d−BTd
,

since d > 1. The right hand side is negative and thus min(tr(J)) > 0 for B <

1/(2− T ). If B > 1/(2− T ), then A+ = (BT + 1)2B/T and

tr(J)
(√

A+
)
> 0⇐⇒ k2 > − TB2 + (2− T )B − 1

B2T 2d+ ((d+ 1)T − T 2)B − T
,

since d > 1. Negativity of the right hand side follows from the lower bound on B

and thus min(tr(J)) > 0 for all B < 2. This shows that tr(J) > 0. The stability

condition (3.18) thus becomes 1 + det(J) − tr(J) < 0 ⇐⇒ γ4k
4 + γ2k

2 + γ0 < 0,

where γ4 = d(A2 −A
√
A2 − 4B2 − 2B2), γ2 = (A2 −A

√
A2 − 4B2)(1−Bd) + 2B3d

and γ0 = B(A2 − 4B2). This condition and thus its minimum −γ2
2/(4γ4) + γ0 is

independent of T . Determining the locus at which the minimum changes sign gives

the threshold dc(A,B).

3.5 Simulations

The preceding linear stability analysis relies on the use of the Laplace kernel. For

other kernel functions whose Fourier transforms do not provide such a simplification

numerical simulations of the model are considered to investigate the onset of pat-

terns. In particular, this allows us to make comparisons between different dispersal

kernels, similar to the analysis performed for the nonlocal model in Chapter 2 and

[61]. These show that both wide plant dispersal kernels and narrow water dispersal

kernels inhibit the formation of patterns. Finally in this section, we show that as

for the nonlocal Klausmeier model, the kind of decay of the plant dispersal kernel

at infinity is also important.

Simulations are performed on the space domain [−xmax, xmax] centred at x = 0.

This domain is discretised into M equidistant points x1, . . . , xM with −xmax = x1 <
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x2 < · · · < xM = xmax such that ∆x = x2 − x1 = · · · = xM − xM−1. On flat ground

(3.5) then becomes

un+1(xk) = C∆x (φ ∗ fn)k , (3.21a)

wn+1(xk) = D∆x (φ1 ∗ gn)k , (3.21b)

where φ, φ1 denote the vectors consisting of the elements obtained by evaluating the

corresponding function at each mesh point, fn, gn denote the vectors consisting of the

elements obtained by evaluating the corresponding function at each (un(xk), wn(xk))

and z1∗z2 denotes the discrete convolution of two vectors z1 and z2. The convolution

terms in (3.21a) and (3.21b) are obtained by using the convolution theorem and the

fast Fourier transform, providing a significant simplification as this reduces the num-

ber of operations required to obtain the convolution from O(M2) to O(M log(M))

(see e.g. [36]).

To mimic the infinite domain used for the linear stability analysis (Section 3.4),

we define the initial condition of the system as follows; on a subdomain [−xsub, xsub]

centred at x = 0 of the domain [−xmax, xmax] considered in the simulation the initial

condition is a random perturbation of the steady state (u,w), while on the rest

of the domain the densities are initially set to equal the densities of the steady

state (u,w). In other words, u0(xk) = u + δ(xk) and w0(xk) = w + ε(xk) for xk ∈
[−xsub, xsub], where ‖δ‖∞< 0.1u and ‖ε‖∞< 0.1w and u0(xk) = u and w0(xk) = w

for xk /∈ [−xsub, xsub]. The size of the outer domain is chosen large enough so

that any boundary conditions (which are set to be periodic) that are imposed on

[−xmax, xmax] do not affect the solution in the subdomain in the finite time that is

considered in the simulation. Figure 3.1 shows a typical patterned solution obtained

by these simulations.

Based on the amplitude of the oscillation relative to the steady state of the

solutions obtained by the simulations we set up a scheme to determine the critical

rainfall level Amax below which pattern onset occurs. Doing this allows us to in-

vestigate how certain changes of parameters and kernel functions affect the onset

of patterns. Due to the random perturbation of the initial state of the system, all

simulation results shown below are the averages taken over 100 simulations. For the

symmetric dispersal kernels φ and φ1 we consider the Laplacian (3.3), the Gaussian

φg(x) =
ag√
π
e−a

2
gx

2

, a > 0, x ∈ R, (3.22)
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Figure 3.1: Simulation of the integrodif-
ference model. This figure shows a
patterned solution obtained by simulat-
ing the integrodifference model on flat
ground. The kernels used in these simu-
lations are the symmetric Laplacian ker-
nels, respectively. The parameter set-
ting (3.15) with T = 0.1 is used in the
simulation. The other parameters are
A = 0.9, B = 0.45 and d = 500.

-20 0 20

0

2

4

6

8

Figure 3.2: Convergence of solutions.
This figure visualises the convergence of
solutions to the local PDE model (3.1) as
T → 0+, to complement the consistency
result presented in Prop. 3.3.1. Solu-
tions of the integrodifference model (3.5)
are shown for T = 0.3, T = 0.2 and
T = 0.1 and are compared with the solu-
tion of the local Klausmeier PDE model
(3.1). Note that unlike in Fig. 3.1, the
spatial domain is chosen to be small to
impose the same wavelength restrictions
on both models to aid the visualisation
of the convergence.

and the power law distribution

φp(x) =
(b− 1)ap

2 (1 + ap|x|)b
, a > 0, b > 3, x ∈ R. (3.23)

We base our comparison on the kernels’ standard deviations, which are given by

σφ =
√

2/a for the Laplacian kernel (3.3), σφg = 1/(
√

2 ag) for the Gaussian kernel

(3.22) and σφp =
√

2/(
√
b2 − 5b+ 6 ap) for the power law kernel (3.23) provided

b > 3. It is perfectly reasonable to perform simulations with kernels of infinite

standard deviation (e.g. b < 3 in the power law kernel) but in the interest of

comparing results for the kernels based on their standard deviation we consider only

b = 3.1 and b = 4.

To investigate the model’s behaviour under changes to the dispersal kernels φ

and φ1, we start by considering simultaneous changes in the kernel functions φ, and

φ1. The comparison between the kernel functions is based on the standard deviation

of the plant dispersal kernel φ and the width of the water dispersal kernel φ1 is set

to a2 = 0.1a to obtain a ratio similar to that of the standard deviations under the
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Figure 3.3: The maximum rainfall parameter Amax under simultaneous changes of
the dispersal kernels. This figure visualises variations of Amax against simultaneous
variations of both kernel functions. The standard deviation on the abscissa refers
to the plant dispersal kernel φ, the width of the water dispersal kernel φ1 is set to
a2 = 0.1a. The rainfall threshold is determined up to an interval of length 10−4

for σφ = {0.01, 0.02, . . . , 0.05, 0.1, 0.2, . . . , 2}. The parameter values used for this
simulation are B = 0.45, ` = `1 = 0.5, m = 5

scalings (3.6), which corresponds to the large value of the diffusion parameter d in the

PDE and integro-PDE models. Figure 3.3 visualises the simulation results, which

show that for small standard deviations, the rainfall threshold Amax is close to its

lower bound, before an increase in the kernel width causes it to peak before slowly

decreasing as the kernel widths are further increased. For very narrow dispersal

kernels very little spatial interaction takes place. In particular, as σ → 0, the

kernel functions tend to the delta function δ(x) centred at 0 and therefore the

integrodifference system (3.5) becomes

un+1(x) = un(x) + C
(
un(x)2wn(x)−Bun(x)

)
,

wn+1(x) = wn(x) +D
(
A− un(x)2wn(x)− wn(x)

)
.

For this system, the steady state (u2, w2), which was randomly perturbed to set the

initial condition of the system in the simulation, is always stable. Therefore, no

patterns exist and Amax = 2B is the minimum value of the rainfall parameter for

which vegetation is growing uniformly, recalling that for A < 2B, the steady state

(u2, w2) does not exist. Further, away from σ = 0, a change in kernel width only

has very little effect on Amax, an indication that an increase to the width of the

plant dispersal kernel has the opposite effect on the tendency to form patterns as

an increase to the width of the water dispersal kernel.
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Figure 3.4: The maximum rainfall parameter Amax under separate variations of the
dispersal kernels.. Part (a) shows Amax up to an interval of length 10−4 with varying
width (σφ = {0.05, 0.1, 0.2, . . . , 2}) and shape of the plant dispersal kernel φ, while
(b) visualises the effects of changes in the water dispersal kernel φ1. The latter
was simulated for a larger range of the kernel’s standard deviation σφ1 , specifically
σφ1 = {1, 2, . . . , 20}, to account for the choice of a2 = 0.1a in the previous simulation.
Also in (b) Amax is determined up to an interval of length 10−4. The widths of the
fixed kernels are set to a2 = 0.1 (a) and a = 1 (b), respectively. The other parameter
values used both simulations are B = 0.45, ` = `1 = 0.5, m = 5.

To test this hypothesis, we investigate changes in the system’s behaviour as in-

dividual kernel functions are changed. First, we consider how the critical rainfall

parameter Amax is affected by a change of the shape of the dispersal kernel φ in the

plant equation (3.21a). The result (see Figure 3.4a) is consistent with results of the

integro-PDE model on sloped ground [61] (Chapter 2). Firstly, an increase in the

width of the plant dispersal kernels reduces the size of the parameter region sup-

porting pattern onset, where changes for larger values of the standard deviation σφ

are much smaller than close to σφ = 0. Identical to the nonlocal Klausmeier model,

a trend that for small standard deviations those kernel functions that decay algeb-

raically at infinity predict a lower value of Amax than those decaying exponentially,

and vice versa for larger kernel widths, is also observed in these simulations.

Next, we perform a similar analysis for the symmetric water dispersal kernel φ1.

To be consistent with the setting a2 = 0.1a in the simulation for the simultaneous

change of the kernel functions, we consider a larger range of σφ1 for this simulation.

The results (Figure 3.4b) show that for narrow kernels, Amax is close to its minimum

A = 2B, i.e. the rainfall interval supporting pattern formation is very small. In

particular, as σφ1 → 0, Amax → 2B and no patterns can occur. For the Laplace

kernel, this can also be shown using linear stability analysis. If σφ1 = 0, then φ̂1 ≡ 1
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and thus the Jacobian (3.16) becomes

J =

(
Cφ̂(k)α Cφ̂(k)β

Dγ Dδ

)
.

Further, the stability condition is

k2 >
BCa2

(
A2 − A

√
A2 − 4B2 − 4B2

)
A2 − A

√
A2 − 4B2

.

The right hand side is negative and thus the steady state is always stable to spa-

tially heterogeneous perturbations. An increase of the kernel width then causes an

increase in the rainfall threshold Amax, where those kernels that decay exponentially

at infinity, yield a larger increase than those decaying algebraically.

The results above confirm that the plant dispersal kernel φ and the water dis-

persal kernel φ1 have opposite effects on the rainfall threshold Amax. While an

increase in the width of the plant dispersal inhibits the onset of patterns, an in-

crease in the standard deviation of the water dispersal kernel increases the tendency

to form patterns. This explains the nearly constant value of Amax in the simulations

in which both kernel functions are varied simultaneously. Consequently, these res-

ults suggest that it is the ratio of plant dispersal to water dispersal, i.e. the ratio

σφ/σφ1 that controls the tendency to form patterns. An increase in the ratio inhibits

the onset of patterns, while a decrease has the opposite effect.

3.6 Discussion

The deliberately basic description of the plant-water dynamics in semi-arid envir-

onments by the Klausmeier model provides a rich framework for model extensions

to address a range of different features of dryland ecosystems and their effects on

vegetation patterns. Extensions include cross advection due to decreased surface

water run-off resulting from an increase in infiltration in biomass patches [237]; ter-

rain curvature [72]; nonlocal dispersal of seeds [20, 61]; secondary seed dispersal due

to overland water flow [35]; nonlocal grazing effects [195, 197]; explicit modelling of

a population of grazers [68]; local competition between plants [236]; the inclusion

of autotoxicity [120]; multispecies plant communities [27, 63, 220] and seasonality

and intermittency in precipitation [58, 221]. One aspect that has not yet been con-

sidered in this context is the seasonal separation of plant growth and seed dispersal.

In this chapter we have considered the synchronised and seasonal occurrence of non-

local seed dispersal through a system of integrodifference equations based on the

Klausmeier reaction-advection-diffusion system.

While an integrodifference system cannot explicitly quantify the temporal sep-
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aration of seed dispersal occurrences, the model’s derivation and an associated con-

sistency result (Proposition 3.3.1) yield a parameter setting in which the length of

the growth phase between dispersal stages can be accounted for. However, the main

result of the linear stability analysis of the integrodifference model in this chapter

(Proposition 3.4.5) shows that conditions for pattern onset in the integrodifference

model (3.5) are independent of the temporal separation of seed dispersal from plant

growth. Moreover, due to the model’s derivation form the Klausmeier model (3.1),

the pattern onset conditions for both models are equivalent.

Some semi-arid environments in which vegetation patterning is a common phe-

nomenon are characterised by large temporal and in particular seasonal fluctuations

in their environmental conditions [31, 148]. For example, observed patterns in Spain,

Israel and North America are all located in Mediterranean climate zones [151], in

which precipitation mainly occurs during winter, while during the summer months

little or no rainfall occurs. By contrast, most mathematical models describing these

ecosystems employ partial differential equations. While PDE models provide a rich

framework for mathematical model analysis, their use is based on the simplifying

assumption that all processes occur continuously in time. The results presented in

this chapter emphasise the importance and significance of results obtained from such

models. In the context of seed dispersal, the biologically more realistic temporal sep-

aration of plant growth and seed dispersal has no effect on the conditions for pattern

onset to occur. We thus conclude that the results obtained for the Klausmeier PDE

model are robust to changes in the temporal properties of seed dispersal processes

and that the assumption of continuous seed dispersal provides a sufficiently accurate

description.

The parameter setting used to establish a connection between the Klausmeier

model (3.1) and the integrodifference model (3.5) couples the scale parameter a

of the seed dispersal kernel to other model parameters. If, however, a more gen-

eral parameter setting is considered, then the effects of changes to the average seed

dispersal distance and the shape of the seed dispersal kernel can be analysed nu-

merically. Our results, which are in full agreement with an earlier investigation

of the nonlocal Klausmeier model (3.2) [61] (Chapter 2), show that seed dispersal

over longer distances inhibits the formation of patterns (Figure 3.4a). Indeed, the

threshold Amax on the rainfall parameter above which no pattern onset occurs, tends

to Amin, the minimum rainfall level required for the existence of a nontrival spatially

uniform equilibrium, as dispersal distances become sufficiently large. Nevertheless,

many plant species in semi-arid ecosystems have developed antitelechoric mechan-

isms which inhibit long range seed dispersal [66, 227]. While in the context of this

study this may appear as an evolutionary disadvantage, the development of narrow

seed dispersal kernels is a side effect of other adaptations such as the development
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Figure 3.5: The threshold Amax in the σφ-B parameter plane. The numerically
obtained rainfall threshold Amax is shown in the σφ-B parameter plane as a contour
plot, where σφ denotes the standard deviation of the plant dispersal kernel φ. It was
obtained on the spatial grid {0.05, 0.1, . . . , 1.95, 2} × {0.05, 0.1, . . . , 1.95, 2} for the
Laplace kernel (3.3) and a2 = 0.1, ` = `1 = 0.5, m = 5. We speculate that there may
be an evolutionary trade-off between dispersal distance and resistance to predation,
which would restrict parameters to an increasing curve in the σφ-B plane.

of seed containers as a protection to predation [66]. This suggests the existence of

an evolutionary trade-off between seed dispersal distance and plant mortality. A

numerical study of the threshold Amax in the σφ-B parameter plane (Figure 3.5)

gives some useful insight into this. The trade-off would restrict parameters to some

increasing curve in the σφ-B parameter plane. Depending on the exact functional

form of such a trade-off, a decrease in the seed dispersal distance σφ may cause a

reduction in the precipitation threshold Amax, if the trade-off implies a sufficiently

large simultaneous decrease in the plant mortality rate B. A lower Amax value cor-

responds to an inhibition of pattern onset. We thus conclude that our model can

capture the evolutionary advantage associated with the development of protective

antitelechoric mechanisms if the trade-off between seed dispersal distance σφ and

plant mortality B is chosen appropriately, but emphasise that we are not aware of

any data that provides quantitative information on the exact form of this trade-off.

Our results further indicate that the shape of the seed dispersal kernel, and

in particular its decay at infinity, has a significant effect on the onset of patterns.

Fat-tailed kernels, for example, that account for a higher proportion of long-range

dispersal events, yield a lower level of Amax than kernel functions with exponential

decay at infinity for a sufficiently small fixed standard deviation. This highlights

the importance of obtaining knowledge of seed dispersal behaviour of plant species,

a property that depends on both species and the environment (e.g. seed dispersal
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agent) [25].

In our integrodifference model (3.5), we model the redistribution of water through

a convolution similar to the modelling of the seed dispersal process. This nonlocal

description can account for overland water flow from bare ground to biomass patches

across larger distances during precipitation events. It does, however, rely on the as-

sumption that the soil’s properties enhance overland water flow in regions of low

biomass. Some ecosystems in semi-arid environments are characterised by soil con-

ditions and soil types (e.g. sand) for which this assumption is invalid [222]. The

formation of vegetation patterns under such environmental conditions can, however,

be explained by other mechanisms, such as laterally extended root networks [131].

The integrodifference model presented in this study is based on the assumption that

little or no water infiltration occurs in regions of low biomass, and that the overland

water flow towards regions of high biomass induced by this soil property is the main

mechanism causing the self-organisation into patterns. In this context, our results

show that water redistribution over longer distances yields the onset of patterns at

higher precipitation levels (Figure 3.4b). This is due to the enhancement of the

pattern-inducing vegetation-infiltration feedback. Existing biomass patches deplete

the water density locally, while regions of bare soil retain a higher water levels.

Hence, any redistribution of water has a homogenising effect on the water density

which yields to a redistribution of the limiting resource from areas of low biomass

to areas of high biomass. An increase in the spatial range of the water redistribu-

tion kernel thus strengthens the pattern-inducing feedback and causes pattern onset

under larger precipitation volumes.

The work in this chapter shows that the description of seed dispersal as a syn-

chronised event during a phase in which no plant growth occurs does not affect the

condition for pattern onset compared to the continuous description of seed dispersal

in the Klausmeier model (3.1). The stability of spatial patterns is equally import-

ant. A natural area of future work would therefore be an analysis of pattern stability

in the integrodifference model (3.5) comparing results with stability results for the

local Klausmeier model [194] and the nonlocal Klausmeier model [20]. For PDE

models, the stability of spatial patterns can be determined through a calculation

of their spectra. For this, a method based on numerical continuation has been de-

veloped by Rademacher et al. [160] (for details see [160, 187]). For integrodifference

equations, however, we are not aware of any methods that allow the determination

of the stability of a patterned solution.

The integrodifference model (3.5) not only splits the dynamics of the plant popu-

lation into separate growth and dispersal stages, but also that of the water dynamics

into a water consumption stage and a water redistribution stage. In the model, spa-

tial redistribution of water is synchronised with seed dispersal. This can provide
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an adequate description for species such as Mesembryanthemum crystallinum and

Mesembryanthemum nodiflorum, which synchronise their seed dispersal with the be-

ginning of the rain season [146], but cannot provide a description of seed dispersal

during drought periods or of water flow at any other time during the rain season.

While a description of the water flow dynamics during precipitation events in the

context of a vegetation model has been proposed [198], the exact dynamics on flat

ground are the subject of ongoing research (e.g. [168, 211, 235]) and could be util-

ised in a future extension of the integrodifference model (3.5). The description of

the water density as one single variable would, however, be prohibitive for such an

approach. Instead a distinction between surface water and soil moisture, such as in

the Rietkerk et al. model [86, 163] or the Gilad et al. model [74], needs to be made

to distinguish between surface water flow processes and water uptake processes that

take place in the soil.

The integrodifference model (3.5) and its analysis presented in this chapter is

restricted to a one-dimensional space domain, motivated by the original formula-

tion of the Klaumeier model and its mathematical accessibility [99]. However, the

consideration of a second space dimension is expected to give more insights into

the ecohydroglogical dynamics, in particular on pattern existence and stability. For

example, in related PDE models on two-dimensional space domains, different types

of patterned solutions exist (gap patterns, labyrinth patterns, striped patterns and

gap patterns) and phase transitions along the precipitation gradient can be invest-

igated [129]. Moreover, even on sloped terrain, the impact of the consideration of a

two-dimensional domain is significant, as the analysis on a one-dimensional domain

may overestimate the size of the patterns’ stability regions [196]. The analysis of the

integrodifference model (3.5) on a two-dimensional domain presents a considerable

challenge, in particular if one would want to obtain a wavenumber-independent res-

ults analogous to Prop. 3.4.5. Nevertheless, this would be a natural area of potential

future work to further disentangle the complex ecosystem dynamics.

Finally, we remark that the integrodifference model (3.5) describes the discrete

structure of plant growth mechanisms caused by the seasonality in precipitation.

However, it does not capture the dynamics specific to drought periods between

rainfall events and is thus only able to provide an insight into effects of accumulated

rainfall volume rather than the temporal separation of precipitation seasons. In

separate work, we account for a combination of rainfall, plant growth and seed

dispersal pulses with the continuous nature of plant loss and water evaporation

and drainage, using an impulsive model [58] (Chapter 4). Such models combine

partial differential equations with integrodifference equations (see for example [238]

for an impulsive model in the context of predator-prey dynamics with synchronised

predator reproduction). The impulsive model has its own limitations as it can only
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take into account a periodic separation of precipitation events, but not any seasonal

patterns. A potential area of future work therefore consists of a combination of

these approaches to describe both the seasonal and intermittent nature of rainfall

in semi-arid climate zones.
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Chapter 4

Effects of precipitation intermittency on vegetation patterns

in semi-arid landscapes

The contents of this chapter are published in [58].

4.1 Author contribution

The authors of the published paper [58] are Lukas Eigentler and Jonathan A Sher-

ratt. Lukas Eigentler conceptualised the research, formulated the mathematical

model, performed both the analytical and numerical analyses of the model, wrote

the paper draft and reviewed and edited the manuscript. Jonathan A Sherratt

conceptualised the research, reviewed and edited the manuscript and provided su-

pervision.

Abstract

Patterns of vegetation are a characteristic feature of many semi-arid re-

gions. The limiting resource in these ecosystems is water, which is added

to the system through short and intense rainfall events that cause a pulse

of biological processes such as plant growth and seed dispersal. We propose

an impulsive model based on the Klausmeier reaction-advection-diffusion sys-

tem, analytically investigate the effects of rainfall intermittency on the onset

of patterns, and augment our results by numerical simulations of model exten-

sions. Our investigation focuses on the parameter region in which a transition

between uniform and patterned vegetation occurs. Results show that decay-

type processes associated with a low frequency of precipitation pulses inhibit

the onset of patterns and that under intermittent rainfall regimes, a spatially

uniform solution is sustained at lower total precipitation volumes than un-

der continuous rainfall, if plant species are unable to efficiently use low soil

moisture levels. Unlike in the classical setting of a reaction-diffusion model,

patterns are not caused by a diffusion-driven instability but by a combination

of sufficiently long periods of droughts between precipitation pulses and wa-

ter diffusion. Our results further indicate that the introduction of pulse-type

seed dispersal weakens the effects of changes to width and shape of the plant

dispersal kernel on the onset of patterns.

62



Chapter 4: Effects of precipitation intermittency on vegetation patterns

4.2 Introduction

Self-organised vegetation patterns are a characteristic feature of semi-arid regions

around the world. The formation of patterns is caused by a positive feedback

between plant growth and water redistribution towards areas of high biomass [166].

Mechanisms involved in the establishment of such a feedback loop include the forma-

tion of infiltration-inhibiting soil crusts in areas of bare ground that induce overland

water flow, a combination of strong local water uptake (vertically extended root sys-

tems) and fast soil water diffusion, nonlocal water uptake (laterally extended root

systems), or a combination thereof [130]. Redistribution of water towards dense

biomass patches drives further plant growth in these regions and thus closes the

feedback loop. First discovered through areal photography in the 1950s [116], veget-

ation patterns have been detected in various semi-arid regions of the world (see [71,

222] for reviews) such as in the African Sahel [48, 141], Somalia [79, 83], Australia

[55, 84], Israel [24, 182], Mexico and the US [48, 152, 153] and northern Chile [68].

The understanding of the evolution and underlying dynamics of patterned vegetation

is of crucial importance as changes to properties such as pattern wavelength, recov-

ery time from perturbations or the area fraction colonised by plants may provide an

early indication of an irreversible transition to full desert [39, 45, 78, 96, 131, 164,

170, 246].

The amount of empirical data on vegetation patterns is limited due to the inab-

ility to reproduce patterns in a laboratory setting and the long time scale involved

in the formation and evolution of them. Thus, a range of different mathematical

models describing the phenomenon have been proposed (in particular by Rietkerk

et al. [163] and Gilad et al. [74]), which focus on various different processes that are

involved in the formation of vegetation patterns. One model that stands out due to

its deliberately basic description of the plant-water-dynamics in semi-arid environ-

ments is the Klausmeier model [99]. The excellent framework for mathematical ana-

lysis and model extensions provided by the Klausmeier reaction-advection-diffusion

model has been utilised extensively in the past (e.g. [10, 20, 34, 35, 61–64, 120,

184–186, 190–192, 194, 199, 221, 236, 237]).

Rainfall in semi-arid regions occurs intermittently, seasonally or as a combination

of both. Under intermittent rainfall regimes only a small number of short-lasting

precipitation events per year provide a sufficiently large amount of water to affect

vegetation growing in these regions [148]. If such rainfall events are sufficiently sep-

arated, they cause a pulse of biological processes before decay-type phenomena of

dry spells take over [148]. Besides plant growth, seed dispersal is also commonly ob-

served to be synchronised with precipitation events. One mechanism, widespread in

dryland ecosystems, which causes such a behaviour is ombrohydrochory, the opening
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of a seed container due to contact with water [146, 227]. Plants in semi-arid regions

are sensitive to quantity, frequency and temporal spread of intermittent precipitation

events [67, 69, 82, 111].

Experimental studies suggest that if the total precipitation volume is kept con-

stant, then a lower frequency of rainfall events yields higher plant biomass [113], an

increase in the aboveground net primary productivity [82] and an increase in the

seedlings’ survival rate [183]. The main factor for these beneficial effects is the tem-

poral increase in soil moisture caused by larger rain events, while a higher number

of smaller individual events keeps the moisture level below a threshold needed for

the activation of biological processes in plants [82, 183]. Contradictory evidence re-

garding seedling survival exists, which suggests that the effects of rain intermittency

depend on a range of factors [113]. In the future, changes to the temporal variability

of precipitation (in particular the intensity of rainfall events) are expected to occur

globally [57, 90].

Despite the fact that seasonality, intermittency and intensity of precipitation

has an important influence on semi-desert ecosystems, most mathematical models

assume that rainfall occurs continuously and uniformly in time. Some simulation-

based studies, however, have addressed the phenomenon by introducing seasonality

(i.e. a wet and dry season) and intermittency of rainfall to existing models for

dryland vegetation dynamics. These include modifications of the Rietkerk model

[80, 198], of the Klausmeier model [221] as well as of the Gilad model [100]. Baudena

et al. [13, 14] couple a model describing the soil moisture proposed by Laio [104]

for the upper soil layer, in which water is added during a wet season either at a

constant rate or as an instantaneous event, to vegetation dynamics. The results of

these studies show beneficial effects of rainfall intermittency, such as an increase in

the area covered by vegetation [100] or plant biomass [13, 100] but also suggest that a

lower frequency of rain pulses increases the minimum requirement on the total annual

precipitation needed to avoid convergence to a bare soil state [221]. The latter result

also suggests that the size of the parameter region in which pattern onset occurs

reduces under intermittent rainfall regimes [221]. Seasonality of precipitation may

have similar effects [80], but can also be detrimental to plants by reducing their

biomass and area fraction covered [13, 100].

Effects due to changes in the frequency of rainfall events have received very little

attention in the mathematical modelling of vegetation patterns, with the works

of Ursino and Contarini [221] on the Klausmeier model, Kletter et al.[100] on the

Gilad model, and Siteur et al. [198] on the Rietkerk model being notable exceptions.

However, none of these papers consider both a wide range of biologically relevant

interpulse times and the system dynamics in drought periods. For example, both

Kletter et al. and Ursino and Contarini restrict their investigation to a small number
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of different precipitation frequencies, while Siteur et al. neglect the ecohydrological

dynamics between rainfall events. Moreover, most theoretical approaches to study

temporal non-uniformity in precipitation are simulation-based. In this chapter, we

introduce a model based on the Klausmeier model that captures both the impulsive

nature of precipitation pulses and associated processes, and also the drought period

dynamics. We keep our model sufficiently simple to allow for an analytical invest-

igation of pattern onset in the system. This enables us to consider a wide range of

different rainfall regimes and study the effects of precipitation intermittency on the

ecohydrological dynamics.

One approach to modelling a system in which pulse-type phenomena occur is the

use of integrodifference equations. In separate work [62] (Chapter 3), we show that

such a framework is insufficient to capture effects of precipitation intermittency as

it is unable to account for the dynamics specific to drought periods between rainfall

pulses. To instead describe situations in which pulse-type phenomena occur along-

side the continuous processes of dry spells, impulsive-type systems are used. Such

models consist of a system of PDEs describing continuous processes on a finite time

domain (n − 1)T < t < nT , n ∈ N and a set of discrete equations that update the

densities at times nT . The use of impulsive models is a relatively new approach in

mathematical modelling but such models are suitable for the description of a wide

range of systems. Previous applications include descriptions of populations whose

life cycle consists of two non-overlapping stages, such as organisms whose larvae

are subjected to a water flow [87, 229]; predator prey systems in which consumer

reproduction occurs only once a year and is based on the amount of stored energy

accumulated through consumption of prey during the year [238] or that are period-

ically subjected to external inputs [2]; and more general consumer-resource systems

in which the consumer reproduction is synchronised [110, 149] or in which seasonal

harvesting occurs [110]. Impulsive models can further provide a mechanistic inter-

pretation of the underlying ecological processes involved in purely discrete systems

[73].

The modelling of plant dispersal as an instantaneous event requires its descrip-

tion by a convolution integral instead of the widely used and mathematically more

accessible diffusion term. Biologically, however, this provides a more realistic de-

scription of the spatial redistribution of plants as the dynamics of seed dispersal

are often affected by nonlocal processes [25]. The use of a convolution term in the

description of seed dispersal is thus not a novelty of this study but has been also

been used in a number of previous models for dryland ecosystems [16, 61, 156, 157].

In this chapter, we introduce and analytically study an impulsive model based

on the Klausmeier model to gain a better understanding of the effects of pulse-

type processes on the onset of vegetation patterns. We motivate the presentation
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of the model in Section 4.3 by a review of the Klausmeier model and its most

relevant results. In Section 4.4 we derive conditions for the onset of patterns in the

impulsive model based on a linear stability analysis. This allows us to investigate

how changes in the rainfall regime affect pattern onset and provides an insight into

the mechanism that is responsible for the formation of patterns in the model. The

analysis presented in Section 4.4 is tractable due to some simplifications, such as

the use of a specific plant dispersal kernel and the restriction to a flat domain. In

Section 4.5 we augment our analytical results by numerical simulations of extensions

of the basic model studied in Section 4.4 to analyse and discuss the effects of our

simplifying assumptions. We present an interpretation of our results and address

potential shortfalls in Section 4.6.

4.3 Model description

In this section we introduce the model which we use to investigate the effects of

rainfall intermittency on the onset of patterns in semi-arid environments. We base

our model on an extension of the Klausmeier model, whose most relevant results are

reviewed.

4.3.1 Klausmeier models

One of the earliest models describing the plant-water dynamics in semi-arid envir-

onments is due to Klausmeier [99]. The relative simplicity of the model provides a

framework for a rich mathematical analysis (e.g. [184–186, 190–192, 194, 199, 221]).

After a suitable nondimensionalisation [99, 185] the model is

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant mortality︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
, (4.1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water consumption

by plants

+ ν
∂w

∂x︸︷︷︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water diffusion

, (4.1b)

where u(x, t) denotes the plant density, w(x, t) the water density, x ∈ R the space

domain where x is increasing in the uphill direction and t > 0 denotes the time.

The diffusion of water was not originally included in the model but is a well es-

tablished addition [95, 199, 225, 247]. It is assumed that water is added to the

system at a constant rate, evaporation effects are proportional to the water density

[167, 171] and the plant mortality rate is density-independent. The nonlinearity in

the water consumption and plant growth terms arises due to the positive feedback
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between local vegetation growth and water redistribution. Water uptake by plants

is the product of the consumer density (u), the resource density (w) and a term

that accounts for the increased resource availability due to the positive feedback

caused, for example, by an increase of soil permeability in vegetated areas (u). This

nonlinearity drives the formation of spatial patterns. The parameters A, B, ν and

d represent rainfall, plant loss, the slope and water diffusion, respectively.

The Klausmeier model (4.1) combines all hydrological dynamics into one single

variable w. By contrast, some other modelling frameworks distinguish between

surface water and soil moisture dynamics [74, 163]. In this chapter, we focus on the

modelling framework presented by the Klausmeier model without such a distinction,

but the application of our modelling approach to a system with both surface and

soil water density is briefly discussed in Sec. 4.6.

In a previous chapter (Chapter 2) [61], we have studied the effects of replacing

the plant diffusion term in the Klausmeier model by a convolution of a probability

density φ and the plant density u, i.e.

∂u

∂t
= u2w −Bu+ C (φ(·; a) ∗ u(·, t)− u(x, t)) , (4.2a)

∂w

∂t
= A− w − u2w + ν

∂w

∂x
+ d

∂2w

∂x2
. (4.2b)

The additional parameters C and a represent the rate of plant dispersal and recip-

rocal width of the dispersal kernel, respectively.

A linear stability analysis of both the local model (4.1) and the nonlocal model

(4.2), with the Laplace kernel

φ(x) =
a

2
e−a|x|, a > 0, x ∈ R, (4.3)

used in the latter, gives an insight into the nature of patterned solutions of the

system. On flat ground, i.e. ν = 0, the onset of spatial patterns occurs due to a

diffusion-driven instability. Thus for any level of rainfall A, there exists a threshold

dc ∈ R on the diffusion coefficient such that an instability occurs for all d > dc. The

analysis for the nonlocal model with the Laplace kernel shows that an increase in

the width of the dispersal kernel inhibits the formation of patterns by causing an

increase in the diffusion threshold.

Unlike the Laplace kernel, other kernel functions do not provide a simplifica-

tion sufficient to study the onset of patterns analytically. Numerical simulations,

however, confirm that the trends observed from the linear stability analysis for the

Laplace kernel also apply to other kernel functions [61] (Chapter 2).
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4.3.2 Impulsive Model

The Klausmeier model assumes that all processes occur continuously in time. To

account for the more realistic combination of pulse-type events associated with short,

high intensity precipitation events with the continuous nature of plant loss, water

evaporation and water dispersal, we propose an impulsive model to describe the plant

and water dynamics in semi-arid environments. Under the assumption that water

transport and the decay-type processes of plant mortality and water evaporation

are the only processes occurring in drought periods between rainfall pulses [148],

the model is

∂un
∂t

=

plant loss︷ ︸︸ ︷
−k1un , (4.4a)

∂wn
∂t

= −k2wn︸ ︷︷ ︸
evaporation

+ k3
∂wn
∂x︸ ︷︷ ︸

water flow
downhill

+ k4
∂2wn
∂x2︸ ︷︷ ︸

water diffusion

, (4.4b)

un+1(x, 0) = f̃ (un(x, τ), wn(x, τ)) , (4.4c)

wn+1(x, 0) = g̃ (un(x, τ), wn(x, τ)) , (4.4d)

where un = un(x, t), wn = wn(x, t), x ∈ R, 0 < t < τ and n ∈ N. The spatial domain

is considered to be infinite with x increasing in the uphill direction. Between the

(n − 1)-th and n-th precipitation pulse, the interpulse PDEs (4.4a) and (4.4b) are

considered on the finite time domain 0 < t < τ , where τ is the time (in years)

between the occurrence of the pulse events described by the update equations (4.4c)

and (4.4d). The interpulse PDEs (4.4a) and (4.4b) describe the continuous loss of

plants at rate k1, and evaporation at rate k2. While no plant dispersal is assumed

to occur during this phase, water diffuses with diffusion coefficient k4 and flows

downhill at velocity k3. The simplistic nature of the PDE system allows for an

analytical study of conditions for pattern onset to occur (Section 4.4.1), but an

extension which also includes plant growth during drought periods is considered

using numerical simulations in Section 4.5.

The functions f̃(un(x, τ), wn(x, τ)) and g̃(un(x, τ), wn(x, τ)) in the update equa-

tions (4.4c) and (4.4d) describe the system’s dynamics during short rainfall pulses,

which are assumed to occur periodically in time. To account for plant growth and

the associated consumption of water as well as seed dispersal synchronised with a
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precipitation event, we choose

f̃ (un(x, τ), wn(x, τ)) =

existing plants︷ ︸︸ ︷
un(x, τ)

+

dispersal of newly added biomass︷ ︸︸ ︷
φ(·; a) ∗

(
k5

(
un(·, τ)

k6 + un(·, τ)

)2

(wn(·, τ) + τk7)

)
,

g̃ (un(x, τ), wn(x, τ)) = wn(x, τ)︸ ︷︷ ︸
existing water

+ τk7︸︷︷︸
rainfall

−
(

un(x, τ)

k6 + un(x, τ)

)2

(wn(x, τ) + τk7)︸ ︷︷ ︸
water uptake

.

In the update equation (4.4d) a constant amount water τk7 is added to the existing

water density. The parameter k7 denotes the total amount of rainfall that occurs

over one year and τ (in years) is the time between two rainfall events. The water

volume added to the system during one precipitation event thus is τk7. At the same

time, water is converted into biomass.

Similar to the Klausmeier model (4.1), the term describing water consumption

by plants consists of the total resource density (w + τk7), a term describing the

water uptake by the plants’ roots (u/(k6 + u)), and a term accounting for the in-

creased ability of plants to consume water in dense patches (u/(k6 + u)). As in the

Klausmeier model, the functional responses of the latter two to the plant density

are chosen to be identical for mathematical convenience. However, the functional

response is different to that used in the Klausmeier model. In the impulsive model

Hup(u) = u/(k6 + u), motivated by the saturating behaviour of water infiltration

into the soil based on empirical evidence [228] and previous applications in mathem-

atical models [74, 86], while in the Klausmeier model Hup(u) = u. The pulse-type

occurrence of precipitation and water uptake in (4.5) necessitates a saturating be-

haviour (H2
up(u) < 1 for all u ≥ 0) of the functional response to ensure positivity

of (4.5d). The parameter k6 is the half saturation constant of the water infiltration

and corresponds to the level of plant biomass at which the water infiltration into

the soil is at half of its maximum. This water uptake term directly corresponds to

the term in (4.4c), describing plant growth, where k5 quantifies the plant species’

water to biomass conversion rate. We have numerically tested the model for other

nonlinearities in this term with such a saturating behaviour without observing any

qualitative differences in the results on pattern onset.

Finally, dispersal of the newly added biomass is described by the convolution

term of that biomass with a probability density function φ. This introduces an

additional parameter a, describing the width of the dispersal kernel in a reciprocal
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way. This constitutes a second main difference to the models discussed above. While

in the Klausmeier models the whole plant density undergoes diffusion/nonlocal dis-

persal, in the impulsive model only newly added biomass is dispersed, weakening

the role of dispersal in the model.

No water redistribution is assumed to occur in this stage. While overland water

flow during intense rainfall events is an area of active research [168, 211, 235], some

hydrological modelling approaches suggest that if the contrast in water infiltration

rates between bare and vegetated soil is small (e.g. in non crust-forming soil types

such as sandy soil), then no water run-on occurs at plant patches during precipitation

pulses [168]. An overview of all parameters, including estimates, is given in Table

4.1.

The formulation of (4.4) is based on a number of simplifying assumptions (e.g.

flat terrain, no plant growth during drought periods, linear functional response to

the water density in the water consumption term) to make to model analytically

tractable (Sec 4.4.1). In Sec. 4.5, we relax these assumptions and analyse their

effects using numerical methods.

The model can be nondimensionalised by u = k6ũ, w = k−1
5 k6w̃, x = a−1x̃,

t = k−1
2 t̃, A = k−1

2 k5k
−1
6 k7, B = k1k

−1
2 , T = k2τ , ν = k−1

2 k3a and d = k−1
2 k4a

2, to

give

∂un
∂t

= −Bun, (4.5a)

∂wn
∂t

= −wn + ν
∂wn
∂x

+ d
∂2wn
∂x2

, (4.5b)

un+1(x, 0) = un(x, T ) + φ(·; 1) ∗

((
un(·, T )

1 + un(·, T )

)2

(wn(·, T ) + TA)

)
, (4.5c)

wn+1(x, 0) = (wn(x, T ) + TA)

(
1−

(
un(x, T )

1 + un(x, T )

)2
)
, (4.5d)

after dropping the tildes for brevity, where un = un(x, t), wn = wn(x, t), x ∈ R,

0 < t < T and n ∈ N. While the dimensionless parameters A, B and T are

combinations of several of the original parameters, they can be interpreted as the

total amount of rainfall per year, rate of plant loss and time between separate

rain and dispersal events, respectively. The water redistribution parameters ν and d

describe the ratio of the water flow coefficients (advection and diffusion, respectively)

to the plant dispersal kernel width 1/a. Their estimates are also included in Table

4.1.

In this form, T = 4 corresponds to rain/dispersal events occurring once per
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Dimensional parameters of (4.4)
Parameter Units Estimates Description

k1 year−1 1.8 [99], 0.18 [99],
1.2[75]

Rate of plant loss

k2 year−1 4 [75, 99, 199],
0.2[163]

Rate of evaporation

k3 m year−1 0-365 [99] Velocity of water flow downhill
k4 m2 year−1 500 [199], Water diffusion coefficient

k5
(kg biomass)
(kg H2O)−1

0.01[163], 0.003 [99],
0.002 [99]

Yield of plant biomass per kg
water

k6
(kg biomass)
m−2 0.05 [75] Half saturation constant of wa-

ter uptake

k7
(kg H2O)
m−2 year−1

250-750 [99],
0-1000 [75]

Total amount of rainfall in one
year

τ year 0-1 Interpulse time
a m−1 0.03-100 [25] Scale parameter of dispersal

kernel, reciprocal of the width

Nondimensional parameters of (4.5)
Parameter Scaling Estimates Description
A k−1

2 k5k
−1
6 k7 0-15 [75, 99, 199] Precipitation per year

B k1k
−1
2

0.45 [99], 0.3[75]
0.045 [99]

Plant mortality rate

T k2τ 0-4 Interpulse time
ν k−1

2 k3a 0-103 [25, 99] Slope (water flow downhill)
d k−1

2 k4a
2 0.1-106 [25, 199] Water diffusion coefficient

Table 4.1: Overview of parameters in (4.4) and (4.5). This table gives an overview of
both the dimensional parameters of model (4.4) and the nondimensional parameters
of (4.5), including their units (dimensional parameters) or scalings (nondimensional
parameters), and their estimated values as well as an interpretation/description.
Note that parameter k5 is dimensionless. However, for ease of interpretation, we
distinguish between (kg biomass) and (kg H2O). The wide ranges for the water
dispersal rates ν and d arise from their dependence on the variations in the width a
of the plant dispersal kernel.
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year. Even though we present results for 0 < T < 4 in this study, it is important

to emphasise that ecologically it is meaningless to consider the limit T → 0. As

the interpulse time T becomes small, the interpulse PDEs (4.5a) and (4.5b), and in

particular the decay-type processes that are described by those equations, become

less significant, while the update equations (4.5c) and (4.5d) remain unaffected by

changes in T . Moreover, substitution of T = 0 into (4.5) reduces the impulsive

system to an integrodifference system given by (4.5c) and (4.5d) in which no plant

death and water evaporation occur. In this setting, due to the lack of water evapor-

ation in the system, resources would be added to the system without being removed,

yielding biomass growth without bound.

4.4 Onset of patterns

A common method to study the onset of patterns is linear stability analysis. Spatial

patterns occur if a steady state that is stable to spatially homogeneous perturbations

becomes unstable if a spatially heterogeneous perturbation is introduced. In this

section we apply such an approach to the impulsive model (4.5) on flat ground

for the Laplace kernel. Our analysis shows that while a smaller number of strong

precipitation events inhibits their onset by decreasing the size of the parameter

region supporting the onset of patterns, it also increases the requirements on the

total amount of rainfall for plants to persist in a spatially uniform equilibrium. We

further show that the introduction of temporal rainfall intermittency replaces water

diffusion as the main cause of spatial patterns.

4.4.1 Linear Stability Analysis

The use of linear stability analysis to determine conditions for the onset of patterns

in a system concentrates on the calculation of growth/decay rates of perturbations

to a spatially uniform equilibrium. In PDE systems and integrodifference systems,

spatially uniform steady states are constant in both space and time, and can be

calculated by setting all derivatives to zero (PDE systems) or imposing un+1 = un

(integrodifference systems). By contrast, spatially uniform equilibria of impulsive

systems are not constant in time. Instead, they are periodic in time with period

T , the time between the occurrences of pulse-type events, and undergo the same

cycle during each interpulse period. Consequently, time derivatives in the interpulse

PDEs cannot be neglected in the calculation of spatially uniform equilibria. For the
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given impulsive model

∂un
∂t

= −Bun, (4.6a)

∂wn
∂t

= −wn + ν
∂wn
∂x

+ d
∂2wn
∂x2

, (4.6b)

un+1(x, 0) = f̃ (un(x, T ), wn(x, T )) , (4.6c)

wn+1(x, 0) = g̃ (un(x, T ), wn(x, T )) , (4.6d)

where un = un(x, t), wn = wn(x, t), x ∈ R, 0 < t < T and n ∈ N, the assumption of

spatial uniformity reduces the impulsive system to the difference system

un+1(0) = f̃
(
un(0)e−BT , wn(0)e−T

)
, (4.7a)

wn+1(0) = g̃
(
un(0)e−BT , wn(0)e−T

)
, (4.7b)

after solving (4.6a) and (4.6b), where the densities during any interpulse period are

given by un(t) = un(0)e−Bt and wn(t) = wn(0)e−t for 0 ≤ t ≤ T . Even though a non-

trivial equilibrium (u(t), w(t)) of (4.6) is a periodic function of time, we introduce the

notation u0 and w0 to denote the equilibrium densities at the start of the interpulse

period, i.e. u0 := u(0) and w0 := w(0). This yields that the general, time-dependent

equilibrium densities can be written as u(t) = u0e−Bt and w = w0e−t for 0 ≤ t ≤ T .

For brevity, we use the notation (u0, w0) to refer to the equilibrium in the analysis

that follows. Thus, from the reduced difference model (4.7) it follows that the

equilibria of (4.6) can be found by solving

u0 = f̃
(
u0e−BT , w0e−T

)
,

w0 = g̃
(
u0e−BT , w0e−T

)
.

Application of this procedure to (4.5) gives the spatially uniform equilibria of the

impulsive system as

(u0
d, w

0
d) =

(
0,
ATeT

eT − 1

)
, (u0
±, w

0
±) =

((
AT − 2e−T + 2

)
e−BT ±√η + 2e−T − 2

2e−BT (1− e−BT )
,

2
((
AT − 2e−T + 1

)
e−BT ±√η + 2e−T − 1

) (
1− e−BT

)(
(AT − 2e−T + 2) e−BT ±√η + 2e−T − 2

)
e−BT

)
,
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where

η =
(

4
(
e−T
)2

+ (−4AT − 4) e−T + A2T 2 + 4AT
) (
e−BT

)2

+ 4
(
e−T − 1

) (
AT − 2e−T

)
e−BT + 4

(
e−T
)2 − 4e−T .

The steady states (u0
±, w

0
±) only exist provided that

A > Amin :=
2
(
1− e−T +

√
1− e−T

) (
1− e−BT

)
Te−BT

, (4.8)

to ensure positivity of η. In principle, this structure is very similar to that of the

Klausmeier models (4.1) and (4.2). For rainfall levels below Amin only the desert

steady state (u0
d, w

0
d) exists and plants die out, while for sufficiently large amounts

of precipitation two further spatially uniform equilibria with non-zero vegetation

density exist. An initial conclusion therefore is the existence of an inhibitory effect

of long drought periods. The existence threshold Amin of (u0
+, w

0
+) increases with

the interpulse time T and thus enlarges the parameter region in which the desert

equilibrium (u0
d, w

0
d) is the only spatially uniform steady state. Even though Amin

does not yield any information on the existence of spatially non-uniform solutions

for low precipitation levels, we use this threshold as a proxy for the minimum water

requirements of the ecosystem. This crucial property is revisited in our discussion

on model extensions in Sec. 4.5.

Similar to the Klausmeier models, spatial patterns arise from the steady state

(u0
+, w

0
+) which is stable to spatially homogeneous perturbations (Proposition 4.4.1).

The stability structure of the steady states of the Klausmeier models is preserved in

the impulsive model, i.e. the desert steady state (u0
d, w

0
d) and the vegetation steady

state (u0
+, w

0
+) are stable to spatially homogeneous perturbations, while the other

vegetation steady state (u0
−, w

0
−) is unstable for all biologically realistic parameter

choices.

Proposition 4.4.1. Let A > Amin,

B2 =
1

T
ln

1 +
ATeT

√
eT − 1

(√
eT −

√
eT − 1

)
2 (eT − 1)

 ,
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and J1(B) := e−T (B+1)(αδ − γβ)−1, where

α = f̃u
(
u0e−BT , w0e−T

)
, β = f̃w

(
u0e−BT , w0e−T

)
,

γ = g̃u
(
u0e−BT , w0e−T

)
, δ = g̃w

(
u0e−BT , w0e−T

)
.

(4.9)

If J1(B) admits a positive real root B1, the steady state (u0
+, w

0
+) is stable to spatially

homogeneous perturbations if B < min{B1, B2} provided that B2 ∈ R or B < B1

provided that B2 /∈ R. If no positive real solution of J1(B) = 0 exists, then (u0
+, w

0
+)

is stable if B < B2 provided that B2 ∈ R.

The proof of Proposition 4.4.1, as well as all those of all other propositions, is

deferred until the end of the section.

From Proposition 4.4.1 it follows that the steady state (u0
+, w

0
+) is stable to spa-

tially homogeneous perturbations close to B = 0 for biologically relevant parameters

(i.e. A, T > 0). Similar calculations yield that (u0
−, w

0
−) is unstable close to B = 0.

In particular, for B = 0.45, the highest estimate of the plant mortality parameter

(see Table 4.1), the steady state (u0
+, w

0
+) is stable for all (A, T ) pairs with A > Amin,

while similarly (u0
−, w

0
−) is unstable.

We investigate the existence of spatial patterns by introducing spatially het-

erogeneous perturbations to the steady state (u0, w0) := (u0
+, w

0
+). The following

propositions provide conditions for a steady state to be stable to such spatially het-

erogeneous perturbations and yield results on the effects of rainfall intermittency on

the onset of spatial patterns.

Proposition 4.4.2. Let f̃ be of the form f̃(u,w) = u+ φ ∗ f̃1(u,w). A steady state

(u0, w0) of the impulsive model (4.6) is stable to spatially heterogeneous perturbations

if |λ(k)|< 1 for both eigenvalues λ ∈ C of

J =

 (
1 + φ̂(k)α̃

)
e−BT φ̂(k)β̃e−(1−iνk+dk2)T

γ̃e−BT δ̃e−(1−iνk+dk2)T

 , (4.10)

for k > 0, where

α̃ =
∂f̃1

∂u

(
u0e−BT , w0e−T

)
, β̃ =

∂f̃1

∂w

(
u0e−BT , w0e−T

)
,

γ̃ =
∂g̃

∂u

(
u0e−BT , w0e−T

)
, δ̃ =

∂g̃

∂w

(
u0e−BT , w0e−T

)
.

(4.11)

The entries of the Jacobian (4.10) are complex-valued. However, a significant

simplification is achieved by considering the model on flat ground, i.e. the case of

ν = 0, thus allowing an application of the Jury criterion (see e.g. [142]) to determine
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conditions such that |λ(k)|< 1 for both eigenvalues of the Jacobian.

Proposition 4.4.3. The steady state (u0, w0) of the impulsive model (4.6) on flat

ground is stable to spatially heterogeneous perturbations if

1 + det(J(k))− tr(J(k)) > 0, (4.12)

for all k > 0, where J is the Jacobian defined in (4.10) with ν = 0.

This provides a sufficient condition for the occurrence of spatial patterns. Both

the local and the nonlocal Klausmeier models undergo a diffusion-driven instability

on flat ground for any level of rainfall, meaning that a sufficiently large ratio of

water diffusion rate to plant diffusion rate yields a pattern-inducing instability (see

Figure 4.1b). This is not the case for the impulsive model. For sufficiently high

levels of rainfall, patterns cannot occur for any level of the diffusion coefficient d,

the ratio of the water diffusion rate to the plant dispersal kernel width. It is indeed

the time T between rainfall pulses that determines for which levels of precipitation

patterns can form. Only for smaller values of A an increase of diffusion through

the critical value dc(A) causes an instability and thus the onset of patterns. Re-

verting back to parameters in dimensional form, this also shows that for sufficiently

low precipitation levels, wider plant dispersal kernels inhibit the onset of patterns,

which is in agreement with results from the nonlocal Klausmeier model (4.2) [61]

(Chapter 2). Similar to the Klausmeier models, diffusion levels close to d = 0 do not

yield an instability for any rainfall parameters and there is a direct transition from

the stable plant steady state to the desert steady state as A is decreased through

the lower bound Amin. This is a conclusion of a numerical investigation (Figure 4.1)

of the stability condition (4.12) using the Laplace kernel (4.3) in the A-d parameter

plane. This analysis was performed for various different choices of the parameters

B and T without showing any qualitative differences.

The evaluation of (4.12) in the A-d parameter plane suggests a closer investiga-

tion of the stability condition (4.12) for d → ∞ (Proposition 4.4.4) and A = Amin

(Proposition 4.4.6). The former provides information on the level of rainfall Amax

above which no instability can occur, while the latter yields the locus of dAmin
, the

minimum value of diffusion required for an instability to occur.

Proposition 4.4.4. If d→∞ in the impulsive model (4.6) on flat ground with the

Laplace kernel (4.3), then (u0, w0) is unstable to spatially heterogeneous perturba-

tions if A < Amax, where Amax satisfies

(1 + α̃ (Amax)) e−BT − 1=0. (4.13)
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(a) Impulsive model
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Figure 4.1: The stability criterion (4.12) in the A-d parameter plane. Part (a)
visualises where the second Jury condition (4.12) changes sign and thus yields an
instability, which causes the onset of spatial patterns (blue line). Given some value
of d, the value of A at which a transition between positivity and negativity of the
condition occurs, is determined up to an interval of length 10−10. The level of d
is increased in variable increments. For d close to 0, the increment is chosen to be
∆d = 0.1, which then increases up to ∆d = 100 as the value of d increases. For any
given (A, d) pair, (4.12) is evaluated for k > 0 at increments of ∆k = 0.01 until a
value of kc is found for which the Jury condition is either negative or positive and
increasing. In the former case, the (A, d) pair supports the onset of spatial patterns,
in the latter the interval [kc−∆k, kc] is investigated further with smaller increments
in k. If still no k is found for which the Jury condition is negative it is assumed that
(4.12) is not satisfied. The other parameter values used in this analysis were T = 0.5
and B = 0.45, with φ being the Laplacian kernel (4.3). This yields Amin = 1.03, and
Amax = 1.099. A comparison to the nonlocal Klausmeier model, which undergoes a
diffusion-driven instability, is shown in (b). Here Amin = 2B = 0.9. The insets show
the behaviour close to d = 0.
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Corollary 4.4.5. The relative size (Amax −Amin)/Amin of the interval [Amin, Amax]

is proportional to e−2T as T →∞.

Given a set of parameters (B, T ), (4.13) can be solved numerically to provide the

level of rainfall A at which a transition between uniform and patterned vegetation

occurs in the limit d → ∞. In combination with the preceding results, this is

the threshold Amax beyond which no pattern onset can occur. This is in stark

contrast to the classical case of a diffusion-driven instability which occurs in the

Klausmeier models (4.1) and (4.2) for which Amax → ∞ as d → ∞. Together with

the lower bound on the rainfall parameter Amin this allows a classification of the T -

A parameter plane into three regions (Figure 4.2a); one in which the desert steady

state is the only spatially uniform equilibrium to exist, one in which instability

of the uniform plant steady state to spatially heterogeneous perturbations causes

the onset of spatial patterns, and one in which any perturbations of the equilibrium

(u0, w0) decay and no pattern onset occurs. This classification of the T -A parameter

plane is based on the preceding linear stability analysis and the perturbation of the

spatially uniform equilibrium (u0, w0). This results in a classification that provides

information regarding the onset of patterns but does not yield any knowledge of

the existence of patterns away from their onset. While no systematic study of the

whole parameter space using numerical continuation was performed, patterns for

parameters outside the interval given by the linear stability analysis can be observed

by slowly increasing/decreasing the rainfall parameter A beyond/below the pattern

onset-supporting interval when the system is already in a patterned state.

Proposition 4.4.4 indicates that a decrease in the frequency of precipitation events

requires a higher amount of rainfall to avoid an instability. This does not mean that

pattern onset occurs for a larger parameter range as periods of droughts become

longer, as an increase in T also increases the lower bound on the rainfall for the

vegetation steady state to exist. Indeed, Corollary 4.4.5 provides information on the

size of the interval for the rainfall parameter A that supports the onset of patterns

relative to the lower bound (4.8) on the rainfall (Figure 4.2b). For small values of

T the size of this interval is larger than the lower bound on the rainfall, for larger T

the size of the pattern onset-supporting interval of rainfall levels decreases at a rate

proportional to e−2T .

For A = Amin, the previous analysis (Figure 4.1a) suggests the existence of a

threshold dAmin
on the diffusion coefficient d below which no instability occurs. Sim-

ilar to the Klausmeier models (4.1) and (4.2) this corresponds to a direct transition

between the spatially uniform vegetation state and the desert state as the rainfall

parameter A decreases through Amin.

Proposition 4.4.6. If A = Amin, there exists a threshold dAmin
> 0 such that
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Figure 4.2: Classification of the A-T parameter plane and the relative size of the
rainfall interval supporting pattern onset as d→∞. Part (a) shows a classification of
theA-T parameter plane in the limit d→∞ into regions in which uniform vegetation
is stable, in which pattern onset occurs, and in which the desert state is the only
spatially uniform equilibrium of the system. The transition A = Amax between
uniform and patterned vegetation (blue line) is obtained by numerically solving
(4.13), while the lower bound A = Amin on the parameter region supporting pattern
onset (yellow line) is obtained from the analytic condition (4.8). The relative size
εmax := Amax−Amin of the parameter region supporting pattern onset is visualised in
(b) and is compared to a reference line of slope exp(−2T ). The plant loss parameter
is B = 0.45. Note the logarithmic scale in (b).
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(u0, w0) is unstable to spatially heterogeneous perturbations for d > dAmin
.

The threshold given by Proposition 4.4.6 is independent of the plant loss para-

meter B. Plant mortality does, however, affect Amin, the level of rainfall required for

the plant steady state to exist. The simplification provided by setting A = Amin is

not sufficient to determine the threshold dAmin
on the diffusion coefficient explicitly,

but similar to the analysis in the d → ∞ case, it can be determined numerically

for a given set of parameters. The results of this show that an increase in the time

interpulse T causes an increase in the threshold dAmin
on the diffusion coefficient,

i.e. a higher ratio of water diffusion to plant dispersal kernel width is required to

cause an instability leading to the onset of patterns.

Proof of Proposition 4.4.1. Linear stability analysis of a steady state (u0, w0) of the

impulsive model (4.6) in a spatially uniform setting is equivalent to linear stability

analysis of the difference system (4.7) with f̃(u,w) = u + (u/(1 + u))2(w + TA)

and g̃(u,w) = (w + TA)(1 − (u/(1 + u))2). Linearisation about the steady state

and introduction of a perturbation proportional to λn yields that the growth factor

λ ∈ C is an eigenvalue of the Jacobian

J(u0, w0) =

(
e−BTα e−Tβ

e−BTγ e−T δ

)
.

The Jury conditions then yield stability of a steady state (u0, w0) if

e−T (B+1)
(
αδ − γβ

)
< 1, (4.14a)

1 + e−T (B+1)
(
αδ − γβ

)
>
∣∣e−BTα + e−T δ

∣∣ , (4.14b)

are both satisfied.

The first Jury condition (4.14a) yields J1(B) < 0. For (u0, w0) = (u0
+, w

0
+),

J1(0) = −1 and thus the condition is satisfied for B < B1, where B1 is the smallest

real positive root of J1(B) provided it exists. The second Jury condition (4.14b)

is J2(B) := 1 + e−T (B+1)(αδ − βγ) − e−BTα − e−T δ > 0. For (u0, w0) = (u0
+, w

0
+),

J2(0) = 0 and dJ2/dB(0) = T > 0 and thus the condition is satisfied for B < B2,

which is the smallest real positive root of J2(B) provided it exists.

Proof of Proposition 4.4.2. Similar to the Proposition 4.4.1, this proof is based on

a linear stability analysis. Unlike in the proof of Proposition 4.4.1, the system

cannot be immediately reduced to a difference system. Additionally, the convolution

in (4.6c) adds a complication. However, both these issues can be addressed by

performing the analysis in Fourier space.
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As is standard with linear stability analysis, we set

un(x, t) = u0e−Bt + ũ(x, t) and wn(x, t) = w0e−t + w̃(x, t). (4.15)

to investigate the behaviour of perturbations (ũ(x, t), w̃(x, t)) to a spatially uniform

equilibrium (u(t), w(t)) = (u0e−Bt, w0e−t). Substitution into the update equations

(4.6c) and (4.6d) and linearisation yields

ũn+1(x, 0) = ũn(x, T ) + φ ∗
(
α̃ũn(·, T ) + β̃w̃n(·, T )

)
, (4.16a)

w̃n+1(x, 0) = γ̃ũn(x, T ) + δ̃w̃n(x, T ), (4.16b)

noting that g̃(u0e−BT , w0e−T ) = w0 and f̃1(u0e−BT , w0e−T ) = u0(1 − e−BT ) by the

definition of the spatially uniform equilibria. The Fourier transform applied to (4.16)

gives

̂̃un+1(k, 0) =
(

1 + φ̂(k)α̃
) ̂̃un(k, T ) + φ̂(k)β̃̂̃wn(k, T ), (4.17a)

̂̃wn+1(k, 0) = γ̃̂̃un(k, T ) + δ̃̂̃wn(k, T ), (4.17b)

making use of the convolution theorem. The functions ̂̃un and ̂̃wn satisfy the inter-

pulse PDEs (4.6a) and (4.6b). Taking the Fourier transform of the interpulse PDEs

(4.6a) and (4.6b) gives

∂̂̃un(k, t)

∂t
= −B̂̃un(k, t),

∂̂̃wn(k, t)

∂t
= −(1− iνk + dk2)̂̃wn(k, t),

which can be solved to

̂̃un(k, t) = ̂̃un(k, 0)e−Bt, ̂̃wn(k, t) = ̂̃wn(k, 0)e−(1−iνk+dk2)t. (4.18)

Substitution into (4.17) yields

̂̃un+1(k, 0) =
(

1 + φ̂(k)α̃
)
e−BT ̂̃un(k, 0) + φ̂(k)β̃e−(1−iνk+dk2)T ̂̃wn(k, 0),

̂̃wn+1(k, 0) = γ̃e−BT ̂̃un(k, 0) + δ̃e−(1−iνk+dk2)T ̂̃wn(k, 0).

from (4.17). This is a linear difference system to which standard tools of stability

analysis can be applied. In other words, the assumption that the perturbations ̂̃un
and ̂̃wn are proportional to λn yields that the growth factor λ ∈ C is an eigenvalue

of the Jacobian J .
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Proof of Proposition 4.4.3. To investigate a steady state’s stability on flat ground,

the Jury conditions can be used. An instability occurs, if at least one of

det(J)− 1 < 0, (4.19a)

1 + det(J)− |tr(J)| > 0, (4.19b)

is not satisfied for some k > 0. The first Jury condition (4.19a) is automatically

satisfied due to stability to spatially homogeneous perturbations, because

det(J) = e−T(B+1+dk2)
((

1 + φ̂(k)α̃
)
δ̃ − φ̂(k)β̃γ̃

)
= e−T(B+1+dk2)

(
δ̃ + φ̂(k)

(
α̃δ̃ − β̃γ̃

))
< e−T (B+1)

(
δ̃ + α̃δ̃ − β̃γ̃

)
= e−T (B+1)

(
αδ − βγ

)
< 1,

for all k > 0, noting that 1 + α̃ = α, β̃ = β, γ̃ = γ and δ̃ = δ, where α, β, γ and

δ are defined in (4.9). The last inequality makes use of the steady state’s stability

to spatially homogeneous perturbations, which in particular guarantees that (4.14a)

holds. Therefore, assuming a steady state’s stability to spatially homogeneous per-

turbations, a sufficient condition for spatial patterns to occur is the existence of

some wavenumber k > 0 such that the second Jury condition (4.12) does not hold.

In the case of model (4.5) this condition can be slightly simplified by noting that

α̃ > 0 and δ̃ > 0 and therefore tr(J) > 0 for all k > 0. The condition thus becomes

1 + det(J)− tr(J) > 0.

Proof of Proposition 4.4.4. If d→∞ and ν = 0, then the Jacobian (4.10) becomes

J =

( (
1 + φ̂(k)α̃

)
e−BT 0

γ̃e−BT 0

)
.

Its determinant is clearly zero and therefore the stability condition simplifies to

1 − (1 + φ̂(k)α̃)e−BT > 0, for all k > 0. For the Laplacian kernel (4.3) this is a

polynomial in k2, which after rearranging becomes

k2 >

(
(1 + α̃) e−BT − 1

)
1− e−BT

. (4.20)

Stability of the steady state requires (4.20) to hold for all k > 0. This is only possible

if the right hand side of (4.20) is negative. Thus, an instability causing the onset of
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spatial patterns occurs if

(1 + α̃) e−BT − 1 > 0. (4.21)

The coefficient α̃ is decreasing in A and thus there exists a threshold A = Amax such

that an instability occurs for all A < Amax.

Proof of Corollary 4.4.5. Substitution of A = Amin(1 + ε) into (4.21) gives

ε < εmax :=
1

8
(
e

3T
2

√
eT − 1 + e2T − eT

2

√
eT − 1− eT

) ,
after linearisation in ε. The right hand side εmax denotes the relative size of the

rainfall interval supporting pattern onset. Its logarithm decreases at rate

(ln (εmax))′ = − 4e
3T
2

√
eT − 1 + 4e2T − 2e

T
2

√
eT − 1− 5eT + 1

2
√
eT − 1

(
eT
√
eT − 1 + e

3T
2 −
√
eT − 1− eT

2

) → −2,

as T →∞. This shows the exponential decay of the relative interval size εmax.

Proof of Proposition 4.4.6. Setting A = Amin provides a significant simplification as

the equilibrium becomes

(
u0, w0

)
=

(√
1− e−T eBT ,

(
eBT − 1

) (
1 + 2

√
1− e−T

)
√

1− e−T

)
.

Thus the coefficients α̃, β̃, γ̃ and δ̃ given by (4.11) become

α̃Amin
=

2
(
eBT − 1

) (
2− e−T + 2

√
1− e−T

)(
1 +
√

1− e−T
)3 , β̃Amin

=
1− e−T(

1 +
√

1− e−T
)2 ,

γ̃Amin = −α̃Amin
, δ̃Amin

=
2
√

1− e−T + 1(
1 +
√

1− e−T
)2 ,

respectively. The Jacobian (4.10) then is

JAmin
=

 (
1 + φ̂(k)α̃Amin

)
e−BT φ̂(k)β̃Amin

e−(1+dk2)T

γ̃Amin
e−BT δ̃Amin

e−(1+dk2)T

 ,

and hence the steady state (u0, w0) is stable to spatially heterogeneous perturbations

if

1 + det (JAmin
)− tr (JAmin

) = ζ
(
1− e−BT

)
> 0⇐⇒ ζ > 0, for all k > 0 (4.22)
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where

ζ =
1(

eT/2 +
√
eT − 1

)3

(((
−2β̃Amin

− 2δ̃Amin

)
φ̂(k) + 3δ̃Amin

)
e−Tdk

2−T/2

+
((

4β̃Amin
+ 4δ̃Amin

)
φ̂(k)− 4δ̃Amin

)
e−Tdk

2+T/2 +
√
eT − 1e−(dk2+1)T δ̃Amin

+4
√
eT − 1

((
β̃Amin

+ δ̃Amin

)
φ̂(k)− δ̃Amin

)
e−Tdk

2

+
(
−1 +

(
4− 4φ̂(k)

)
eT
)√

eT − 1 +
(
−3 + 2φ̂(k)

)
eT/2 − 4e3/2T

(
φ̂(k)− 1

))
.

The minimum of the function ζ is decreasing in d and thus there exists a threshold

dAmin
such that (4.22) does not hold for any d > dAmin

.

4.5 Simulations of model extensions

In the preceding linear stability analysis we have made a number of simplifying

assumptions to make the derivation of the criteria for pattern onset analytically

tractable. To investigate the impact of these simplifications on our results, we

numerically investigate extensions of (4.5) in which some previous assumptions are

relaxed.

The analysis in this section yields that the exponential decay (with increasing T )

of the size of the parameter region supporting pattern onset is due to the temporal

separation of the components of the pattern-inducing feedback loop and does not

occur if plant growth processes extend into drought periods. Results obtained in this

section also highlight the importance of understanding a plant species’ response to

low soil moisture levels. This functional response is established to have an important

influence on the ecosystem dynamics under precipitation regimes with intermediate

interpulse times. Finally, the effects of sloped terrain and changes to the plant

dispersal kernel are investigated.

4.5.1 Method

Simulations to determine the parameter region in which pattern onset occurs are

performed in two stages. Unless the non-trivial spatially uniform equilibria of the

system can be calculated analytically, we initially integrate the corresponding space-

independent model to determine the threshold Amin below which the desert equi-

librium is the system’s only spatially uniform steady state. The calculation of

Amin further provides the equilibrium plant and water densities (u0, w0) close to

the threshold.
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Numerical simulations of the full model are then performed on the space domain

[−xmax, xmax] centred at x = 0. This domain is discretised into M equidistant points

x1, . . . , xM with −xmax = x1 < x2 < · · · < xM = xmax such that ∆x = x2 − x1 =

· · · = xM − xM−1. The ODE system resulting from the discretisation of the inter-

pulse PDE system (4.5a) and (4.5b) is integrated, and the densities at every space

point are updated at the end of each interpulse period of length T . The discrete

convolution term arising from the discretisation of (4.5c) is obtained by using the

convolution theorem and the fast Fourier transform, providing a significant simplific-

ation through a reduction of the number of operations from O(M2) to O(M log(M))

required to obtain the convolution (see e.g. [36]).

To mimic the infinite domain used for the linear stability analysis (Section 4.4.1),

we define the initial condition of the system as follows; on a subdomain [−xsub, xsub]

centred at x = 0 of the domain [−xmax, xmax] the steady state (u0, w0) near its exist-

ence threshold Amin is perturbed by a function containing a collection of applicable

spatial modes, while on the rest of the domain the densities are initially set to equal

the densities of the steady state (u0, w0). The restriction of the perturbations to

a small subdomain is used to avoid difficulties posed by the boundaries. The size

of the outer domain is therefore chosen large enough so that any boundary condi-

tions (which are set to be periodic) that are imposed on [−xmax, xmax] do not affect

the solution in the subdomain during the time that is considered in the simulation.

Figure 4.3 shows a typical patterned solution obtained by these simulations.

We use model realisations obtained through this method to determine the critical

rainfall level Amax below which pattern onset occurs in the different model exten-

sions.

4.5.2 Nonlinear water uptake

In the original model (4.5), water consumption by plants (and the plant growth

associated with it) is described by

Up(u,w) = Gup(w)H2
up(u) = (w + TA)

(
u

1 + u

)2

.

The linearity in w is inherited from the Klausmeier model on which our impulsive

model is based. Field observations indicate that dryland ecosystems remain dormant

under low soil moisture levels and are only activated if the water density is sufficiently

high [82, 183]. Mathematically, such a property can be described by a Holling type

III functional response [31]. To incorporate such a nonlinear response into the
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Figure 4.3: Solution of the impulsive model. This visualises a numerically obtained
realisation of the impulsive model (4.5) on flat ground. The plant dispersal kernel φ
is set to the Laplacian kernel (4.3) and the parameter values areB = 0.45, A = 1.623,
d = 100 and T = 1. The number of space points is M = 109.

impulsive model, we consider an amended uptake function with

G̃up(w) =
Cm (w + TA)p

Cp
h + (w + TA)p

, p > 1,

where Cm is the maximum water uptake per unit biomass, Ch is the half satur-

ation constant of the water consumption and p accounts for the strength of the

nonlinearity. Typical parameter values are Cm = 20, Ch =
√

2 and p = 4 [31].

The introduction of this nonlinearity causes complications as positivity of the wa-

ter density w is no longer guaranteed by the update equation (4.5d). To avoid the

occurrence of negative densities, we cap the new water uptake function Ũp(u,w) by

w + TA, i.e. set

Ũp(u,w) = max{w + TA, G̃up(w)}H2
up(u).

The most significant result of our numerical investigation of (4.5) with a Holling

type III functional response in the water uptake and plant growth terms is that the

minimum of the existence threshold Amin of a non-trivial equilibrium (Figure 4.4a)

occurs for intermediate interpulse times. Under the assumption that total annual

rainfall A is fixed, longer drought periods between precipitation pulses correspond

to higher intensity rainfall events. Resource availability at the time of water uptake
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and plant growth is thus higher and exceeds the threshold required for plant growth

processes to be activated, which is accounted for in the Holling type III functional

response. Conversely, high frequency - low intensity precipitation pulses accumu-

lating to the same amount of total annual rainfall volume are not sufficient to push

the water density above this critical value. It is worth emphasising that further in-

creases in the separation of precipitation events (and associated increases in rainfall

intensity) to a low frequency - high intensity regime reverses the decrease in Amin

due to the saturating behaviour of the water uptake function.

Further, the property that an increase in the interpulse time T reduces the

size of the parameter region in which onset of patterns occurs is unaffected by the

introduction of a nonlinear water uptake term. Similar to the analytically derived

exponential decay of the relative size of [Amin, Amax] for (4.5) with a linear functional

response (Corollary 4.4.5), results of our numerical scheme for a Holling type III

functional response also indicate an exponential decay of the interval’s relative size

with increasing interpulse times (Figure 4.4b).

Numerical solutions of the model do, however, become unreliable as the interpulse

time T is increased. For larger T , the decay-type processes in the interpulse PDEs

yield very low plant levels in the troughs of the pattern at the end of the interpulse

period. This is a natural source of potential errors. Indeed, Figure 4.4c depicts that

numerical solutions of the system for large T can yield negative plant densities at the

end of the interpulse period, highlighting the difficulties encountered in a numerical

approach.

To investigate the effects of the strength of the nonlinearity in more detail,

we compare results on pattern onset as the strength of the nonlinearity gradually

increases away from the linear behaviour considered in (4.5). While it is impossible

to revert back to the linear term by parameter changes only, the behaviour for small

values of the water density w can be mimicked by choosing p = 1 and Cm = Ch

sufficiently large. We use this as the reference point to the analytical results obtained

in Section 4.4.1 and vary the extent of the nonlinearity in the functional response by

fixing Cm = 20 and setting Ch = 20− (20−
√

2)ξ and p = 1 + 3ξ for 0 ≤ ξ ≤ 1. For

sufficiently low fixed interpulse times T , an initial increase of ξ causes an increase of

the rainfall level Amin that is required for a spatially uniform non-trivial equilibrium

to exist (Figure 4.4d). As the strength of the nonlinearity increases further, Amin

attains a maximum and then decreases below its level for the model with linear

functional water uptake response analysed in Section 4.4.1.

The reasoning for this behaviour stems from the variation in the functional re-

sponse Gup under changes of ξ, which is visualised in Figure 4.4e. For sufficiently low

T , the resource availability at the time of water uptake is also low. Thus a linear

functional response yields a higher water consumption than a nonlinear response
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with moderate ξ, but a lower consumption than a nonlinear response with larger

ξ. More precisely, the increase in the exponent p and the associated concave-up

shape of Gup causes the initial increase in Amin. A further increase in ξ decreases

the half-saturation parameter Ch and the range of resource densities affected by the

concave-up behaviour decreases in size. This causes the eventual decrease in Amin

as the strength of the nonlinearity is increased further.

For sufficiently large drought lengths T , the maximum in Amin occurs at ξ = 0

and thus any ξ > 0 reduces the minimum water requirements of the system. The

upper bound Amax of the parameter region supporting pattern onset mimics the

behaviour of Amin. The size of the parameter region in which pattern onset occurs

increases slightly with increasing ξ, but changes to its size are insignificant compared

to changes causes by variations in the interpulse time T .

4.5.3 Nonlinear PDEs

The original impulsive model (4.5) is based on the assumption that no plant-water

interactions take place during drought periods. The interpulse equations thus form

a system of linear and decoupled PDEs that describe exponential decay of both

plant and water densities between precipitation pulses. We relax this assumption

by extending the occurrence of biomass growth into the interpulse phase. This

changes the PDE system to

∂un
∂t

= −Bun + C

(
un

1 + un

)2

wn,

∂wn
∂t

= −wn − C
(

un
1 + un

)2

wn + d
∂2wn
∂x2

,

where the nondimensional constant C accounts for the rate of water uptake. The

pulse equations (4.5c) and (4.5d) remain unchanged, i.e. there is still a pulse of

plant growth synchronised with a precipitation event.

While a typical estimate is C = 10 [75], we use our numerical scheme to invest-

igate how a gradual increase from C = 0 (which corresponds to the model studied

analytically in Section 4.4) affects the pattern onset observed in the system. An

increase in the plants’ growth rate during drought periods causes a decrease in the

existence threshold Amin of a spatially uniform non-desert equilibrium and the pre-

cipitation level Amax at which pattern onset occurs (Figure 4.5b). This decrease is

caused by a reduction in total resource loss through evaporation and the associated

increase in water availability to plants. In the original model (4.5) (C = 0), water

that is not consumed by plants during the rainfall pulse undergoes exponential de-

cay due to evaporation during the interpulse period and is lost from the system. If
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Figure 4.4: Classification plots for a nonlinear functional response in the water
uptake function. The classifications (a) and (d) into states of desert, onset of spatial
patterns and uniform vegetation are based on the numerical scheme described in
Section 4.5.1. The transition threshold Amax is determined up to an interval of size
10−5, the level of Amin up to an interval of size 10−8. The relative size of [Amin, Amax]
corresponding to the classification in (a) is shown in (b), where the reference line
is of slope exp(−2T ). The parameter values used in both simulations are B = 0.45
and d = 500. The water uptake function Gup(w) is shown in (e) for several values
of ξ, with its behaviour close to the origin shown in the inset. The minimum plant
density before a rainfall pulse minx∈[−xmax,xmax]{un(x, T )} of a stable pattern is shown
in (c), where the blue and red markers indicate positive and negative values of un,
respectively. This visualises the numerical issues encountered in simulations for
longer interpulse times T .
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Figure 4.5: Classification plots for the inclusion of plant growth in the interpulse
PDEs. The classifications into states of desert, onset of spatial patterns and uni-
form vegetation is based on the numerical scheme described in Section 4.5.1. The
transition threshold Amax is determined up to an interval of size 10−5, the level of
Amin up to an interval of size 10−8. The parameter values used in both simulations
are B = 0.45 and d = 500.

C 6= 0, however, water that enters the drought phase not only evaporates but also

continues to be converted into plant biomass, which causes a reduction in evapora-

tion losses.

The second main conclusion arising from the inclusion of a nonlinear coupling of

the interpulse PDEs is the conservation of a large parameter region in which pattern

onset occurs for large T (Figure 4.5a), instead of an exponential decay of its size

with increasing T . The existence of such a region is due to the inclusion of a pattern-

inducing feedback in the interpulse PDEs. More water is consumed in regions of

high biomass density, which causes the homogenising effect of water diffusion to

redistribute more water towards these regions yielding further plant growth. If

water uptake between pulses is weak (small C), or as in the original model non-

existent (C = 0), the system’s only pattern-forming feedback loop consists of the

nonlinearity in the plant growth term in the update equations in combination with

the homogenising property of water diffusion in the interpulse PDEs. The latter

loses its impact as T is increased, as evaporation effects become dominant and cause

a decrease in water availability at the end of the interpulse phase. The water density

at the growth pulse therefore only depends on the intensity of the rain event, but

is independent of the diffusion process that occurs before the rainfall pulse. This

weakens the strength of the pattern-inducing feedback loop and causes the decrease

in the size of the parameter region in which pattern onset occurs.
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4.5.4 Kernel functions

In the linear stability analysis in Section 4.4.1, we set the plant dispersal kernel

to the Laplace kernel (4.3). Seed dispersal behaviour, however, depends both on

species and environmental conditions [25]. Similar to the work on a previous model

[61] (Chapter 2), we use our numerical scheme to investigate effects caused by setting

the dispersal kernel to the Gaussian

φ(x) =
ag√
π
e−a

2
gx

2

, a > 0, x ∈ R, (4.23)

and the power law distribution

φ(x) =
(b− 1)ap

2 (1 + ap|x|)b
, a > 0, b > 3, x ∈ R. (4.24)

We base our comparison on the kernels’ standard deviations, which are given by

σ(a) =
√

2/a for the Laplacian kernel (4.3), σ(ag) = 1/(
√

2 ag) for the Gaussian

kernel (4.23) and σ(ap) =
√

2/(
√
b2 − 5b+ 6 ap) for the power law kernel (4.24)

provided b > 3. It is perfectly reasonable to perform simulations with kernels of

infinite standard deviation (e.g. b < 3 in the power law kernel) but in the interest

of comparing results for the kernels based on their standard deviation we consider

only b = 3.1 and b = 4.

In the simulations we are interested in both the effects of changes to the shape

of the dispersal kernel and the effects caused by a variation in the temporal inter-

mittency of precipitation. As shown in Figure 4.6b, the latter bears much more

influence on the rainfall threshold Amax than the choice of plant dispersal kernel.

Indeed, the results obtained for all kernel functions follow the narrow band of expo-

nentially decaying size in the T -A parameter region in which pattern existence has

been shown for the Laplace kernel in Section 4.4.1 and in particular in Figure 4.2a.

While the effects of the kernel shape are negligible compared to changes of the

interpulse time T , their influence on the system can still be studied if T is fixed.

Instead of varying T , we opt to investigate how the threshold Amax, at which pattern

onset occurs, changes under variations of the water diffusion coefficient d. This

allows us to draw a connection to the results of the linear stability analysis visualised

in Figure 4.1. Our numerical scheme shows that all kernel functions considered

in the simulations qualitatively follow the same behaviour, which agrees with the

analytically deduced result for the Laplace kernel in Section 4.4.1. For sufficiently

low levels of rainfall, the diffusion coefficient needs to exceed a threshold to give

rise to an instability resulting in the onset of spatial patterns. There does, however,

exist an upper bound (not shown in Figure 4.6a) on the rainfall parameter for each

kernel function above which pattern onset from a perturbation of the steady state
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Figure 4.6: Changes to Amax under variation of water diffusion and the time between
rain pulses. This figure visualises changes to the critical rainfall parameter Amax un-
der changes of the water diffusion rate d ((a)) and the interpulse time T ((b)).
The rainfall threshold Amax is determined up to an interval of length 10−4 for
d = {0, 5, . . . , 50, 60 . . . 100, 125, . . . , 200, 250, . . . , 1000} and T = {0.1, 0.2, . . . , 4},
respectively. Plant mortality is set to B = 0.45. The legend applies to both parts
of the figure.

is impossible. Due to the nondimensionalisation of the model an increase in the

diffusion coefficient d corresponds to a decrease in the width of the dispersal kernels.

Thus, for a fixed kernel function an increase in kernel width inhibits the onset of

patterns. Note, however, that information on the kernels’ standard deviation, which

we use as a measurement of kernel width, is insufficient to make comparisons between

results for different kernel functions. Conditions for pattern onset also depend on

the dispersal kernel’s type of decay at infinity; for example Amax for the Laplace

kernel and the power law kernel with b = 4 coincide in Figure 4.6a, even though

their standard deviations are σL =
√

2 and σP = 1, respectively.

4.5.5 Slope

Finally, we lift the restriction of the flat spatial domain for which the linear stability

analysis of (4.5) was performed in Section 4.4. Originally, the Klausmeier model

was proposed to describe vegetation bands on sloped terrain and a lot of previous

work has focussed on this scenario (e.g. [61, 99, 191]). A numerical investigation

into the existence of spatial patterns of (4.5) on a sloped spatial domain shows that

the threshold Amax at which a transition between uniform and patterned vegetation

occurs, increases with increasing slope ν (Figure 4.7c). The lower bound Amin of the

parameter region supporting the onset of spatial patterns from spatially nonuniform
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perturbations of the equilibrium, is a non-spatial property and thus independent

of the slope parameter ν. Thus the size of [Amin, Amax] increases with increasing

ν. Ecologically, this stems from an increase in the strength of the pattern-forming

mechanism. On steeper slopes water flows downhill faster and thus increases the

competitive advantage of existing biomass patches.

This increase in the size of [Amin, Amax] is, however, negligible compared to the

decay of the interval’s size for increasing interpulse time T (Figures 4.7a and 4.7b).

Our results indicate that the interval’s size decays exponentially, similar to the

analytically obtained result (Corollary 4.4.5) for the model on flat ground in the

limit d → ∞. We thus conclude that the simplified model (ν = 0) qualitatively

yields the same results on the onset of patterns under variations in the length of the

drought period T .

4.6 Discussion

In this chapter, we consider a new impulsive-type model to investigate the effects

of rainfall intermittency on the onset of vegetation patterns in semi-arid environ-

ments. Most significantly, our results suggest that the decay-type behaviour which

dominates during long drought periods inhibits the onset of spatial patterns and

that ecosystems benefit from precipitation intermittency if plant species are unable

to efficiently use low soil moisture levels.

The inhibition of patterns by low frequency rain events is quantified by the

small size of the interval of rainfall levels in which pattern onset occurs. Therefore,

plants are able to form a uniform vegetation cover for rainfall levels very close to the

minimum required for the corresponding spatially uniform equilibrium to exist. This

pattern-inhibitory effect in the impulsive model (see Proposition 4.4.5 and Figures

4.2 and 4.6b) can be explained by the weakening effect of the temporal separation

of rainfall pulses on the plant growth-water redistribution feedback which is the

main contributor in the formation of patterns [107, 166]. This positive feedback

loop consists of two processes; the increased water utilisation in regions of high

biomass and the redistribution of water. In (4.5) these processes occur in different

stages. The soil modification by plants affects water consumption and plant growth

which only occur in the update equations associated with a rainfall pulse, while

water diffusion is accounted for in the interpulse PDE system. Therefore, if plants

are in a patterned state, the water density immediately after a rainfall pulse is in

antiphase to the plant density (i.e. high water density in regions of low biomass

and vice versa). The homogenising property of diffusion thus redistributes water

from patches of low biomass to regions where plant density is high. If, however,

the separation of precipitation pulses is too long, this homogenising effect loses its
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Figure 4.7: Classification plots for the model on a slope. The classifications into
states of desert, onset of spatial patterns and uniform vegetation are based on the
numerical scheme described in Section 4.5.1. The transition threshold Amax is de-
termined up to an interval of size 10−8, the level of Amin is given by (4.8). The relative
size of [Amin, Amax] is shown in (b), where the reference line has slope exp(−2T ).
The parameter values used in both simulations are B = 0.45 and d = 500.
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impact as water evaporation becomes the dominant process. In the model extension

which assumes that plant growth occurs in both the pulse stage and during the

interpulse period (Section 4.5.3), the temporal separation of rainfall events does

not weaken the pattern-inducing feedback. The closure of the feedback loop in the

interpulse PDEs allows for more water transported to regions of high biomass during

drought periods to be utilised and thus supports the pattern-forming mechanism.

For a fixed interpulse time T , the reduction in water evaporation associated with

this increase in water to biomass conversion causes a reduction in the minimum

amount of precipitation required for a spatially uniform equilibrium to exist. We

use this minimum on the rainfall parameter (Amin) as a proxy for the minimum water

requirements of the ecosystem, but emphasise the fact that spatially non-uniform

stable states with non-zero plant densities are likely to exist for lower precipitation

levels and no information on the resilience of the ecosystem can be extracted from

the analysis presented in this chapter. For both the extension with nonlinear in-

terpulse PDEs and the original model (4.5), the threshold Amin increases with the

drought period length T , which indicates that an increase in the time between rain-

fall events has a detrimental effect on the ecosystem. Even though this does not

agree with the majority of reported field observations [82, 183], there exists evidence

of this inhibitory effect for some dryland species, with an increase in seeds germin-

ation rates, a decrease in emergence rates and an increase in seedling mortalities

under longer periods of droughts [109, 113]. This suggests that an ecosystem’s re-

sponse to temporal variability in precipitation is highly species-dependent and it is

important to understand a species’ response to oscillations in soil moisture to model

its dynamics. Indeed, we have established that changes to the plants’ water uptake

functional response to the water density (Section 4.5.2) can reverse the increasing

behaviour of the minimum water requirement proxy Amin observed in the original

model in which the functional response is linear (Figure 4.2a). If species in an eco-

system remain dormant under low soil moisture levels caused by a high frequency

- low intensity rainfall regime, then rainfall intermittency and the associated tem-

poral increases in soil moisture can have a positive impact on the ecosystem [82,

183]. Mathematically, we used a Holling type III functional response to model this

dormant behaviour under low soil moisture levels. If the concave-up shape of this

species-dependent functional response is sufficiently strong for low water densities,

then Amin attains a minimum for an intermediate interpulse time T because wa-

ter uptake is maximised under such conditions. This is in agreement with results

obtained for the Gilad [74] model [100].

The dominant role of precipitation intermittency on the onset of patterns also

manifests itself in the fact that, unlike in the Klausmeier models, diffusion alone is

insufficient to cause pattern onset in the impulsive model. The onset of spatial pat-
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terns still requires the diffusion coefficient to exceed a threshold (Proposition 4.4.6)

but in stark contrast to the Klausmeier models in which a sufficiently large level of

diffusion can cause an instability for an arbitrarily large level of rainfall, the effects of

diffusion are limited to a small interval of the rainfall parameter (Proposition 4.4.4),

whose size decreases exponentially as precipitation pulses become more infrequent

(Corollary 4.4.5). This deviation form the classical case of a diffusion-driven in-

stability is due to the previously discussed temporal separation of the components

of the pattern-inducing feedback that renders diffusion effects insignificant under

long drought spells. This property is specific to the system considered in this study

and no generalisations can be made. Indeed, diffusion-driven instabilities have been

shown to occur in other impulsive models [238].

A second key aspect of this study is the effects caused by changes to the width

and shape of the plant dispersal kernel. Contrary to the beneficial effect associated

with the inhibition of pattern onset due to wide plant dispersal kernels shown by

the model in this chapter (Figure 4.6a), plants in semi-arid regions are observed

to establish narrow dispersal kernels [66]. This is, however, only a secondary effect

caused by other adaptations such as protection from seed predators, that are not

accounted for in these models but nevertheless affect the vegetation’s evolution in

arid regions [66]. The quantitatively small changes to the rainfall threshold Amax

in the impulsive model are caused by the fact that in the impulsive model only

the newly added biomass is dispersed, while in the other models the whole plant

density undergoes dispersal. Combined with the claim that plants compensate for

the negative effect of a narrow seed dispersal kernel by changes of traits not included

in this model, this suggests the combination of the weak response of the impulsive

model to changes in the width of the dispersal kernel and the stronger effect of

rainfall intermittency provides a more realistic framework than a previous model in

which the seed dispersal distance played an important role in the absence of any

pulse-type events [61] (Chapter 2).

To facilitate the mathematical analysis presented in this chapter we have opted

for a fully deterministic modelling of precipitation. The assumption that rainfall

events occur periodically in time and are all of the same intensity is, however, an

inaccurate description of the inherently stochastic nature of this key process. A

more realistic description of such precipitation events can be achieved through a

Poisson process with exponentially distributed rainfall intensities [167]. The model

framework presented in this model is, however, insufficient to consider any stochasti-

city in the rainfall regime. Neither the original model (4.5) nor any of its extensions

presented in Section 4.5 include mechanisms that allow plants to recover from a very

low density. Thus, the eventual occurrence of a long drought period (possibly com-

bined with low intensity pulses) under a stochastic precipitation regime inevitably
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causes the extinction of plants in the long term. In reality, plants have developed

mechanisms such as seed dormancy that allow recovery from low biomass densities

[109]. Their inclusion in a mathematical model is required to better understand an

ecosystem’s response to stochasticity in environmental conditions. Nevertheless, it

is possible to relate the results of the deterministic model presented in this study

to a stochastic setting. Similar to a previous study of effects of temporal variations

of rainfall pulses on dryland ecosystems, the constants involved in the deterministic

modelling of precipitation can be seen as the expected values that arise from the

underlying stochastic processes [198]. If this assumption is applied then our results

on thresholds such as Amax present an approximation to the expectations of the

respective quantities when any higher order moments (variance, etc.) of the random

variables associated with the description of precipitation are neglected [198].

While the model extensions (and possibly combinations thereof) presented in

Section 4.5 provide a more realistic description of the ecosystem dynamics under a

pulse type precipitation regime, the analytical study of the simpler model (4.5) in

Section 4.4 is an important tool to gain a better understanding of vegetation patterns

in semi-arid environments. Numerical approaches tend to become unreliable as

the length of the drought periods increases because decay-type processes of long

dry spells reduce the plant density in troughs of the spatial pattern to very small

values. This makes numerical integration techniques error-prone and emphasises the

importance of analytical pathways into the problem (Figure 4.4c).

The results presented in this chapter are based on our analysis of a theoretical

model and a comparison with empirical data would be desirable to test these hypo-

theses. Daily rainfall data is available from the 1980s to the present (see e.g. [118]

for data from Africa), and data with a coarser temporal scale dates back to the 1940s

[52]. However, obtaining high-quality data for vegetation in dryland ecosystems is

notoriously difficult due to the large spatial and temporal scales of the ecosystem

dynamics. Some limited data obtained from satellite images exists (e.g. [48]), for

example on wavelength which can be used as a proxy for biomass, but a compar-

ison with any model predictions would require a better measure of key ecological

properties, as well as a long time series of data points.

In this study, we have analysed the effects of rainfall intermittency on pattern on-

set in dryland vegetation in one space dimension only. On flat ground in particular,

the consideration of a two-dimensional domain would be a natural extension. This

could provide more insight into the patterns’ properties such as its type (gap pat-

tern, labyrinth pattern, stripes or spots) under changes to the precipitation regime

[129]. The analysis of the impulsive model on a two-dimensional domain would be

significantly more challenging, but methods for studying pattern formation in PDEs

on such domains exist (see, for example, [196] for an analysis of the Klausmeier
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model), which hold the potential to be adapted to the framework of an impulsive

model.

A further natural area of potential future work could involve an accurate de-

scription of overland water flow during a rainfall event. For sloped terrain such

a description has been provided and applied to a mathematical model describing

the evolution of vegetation patterns by Siteur et al [198]. Their argument is based

on water instantaneously flowing downhill and infiltrating the soil in areas of high

biomass and can thus not be applied to a flat spatial domain. Indeed, overland

flow of water during intense rainfall events on semi-arid flat plains is the subject of

ongoing research (e.g. [168, 211, 235]). A detailed description of the overland water

flow and infiltration into the soil that occurs before water is consumed by plants

relies on a clear distinction between the surface water density and the soil moisture.

Such a separation is used in alternative model frameworks [74, 86, 163], which could

be utilised to include the description of water redistribution during rainfall events

under a pulse-type precipitation regime.

The model introduced in this chapter is based on the Klausmeier model, which

is a model that is deliberately kept simple to facilitate a mathematical analysis of it.

A number of more complex models exist (see [21, 124, 247] for reviews) that study

different aspects of patterned vegetation in more detail by, for example, including

two coexisting plant species [16, 63, 76, 157], describing water uptake as a nonlocal

process [74, 75] or considering effects of nonlocal grazing [195, 197]. For some of

these models numerical studies have investigated the effects of temporal rainfall

variability [80, 100, 198] and an analytical analysis of those models similar to the

work done in this study could provide further insight how pulse-type phenomena

affect patterns in semi-arid environments.
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Metastability as a coexistence mechanism in a model for

dryland vegetation patterns

The contents of this chapter are published in [63].

5.1 Author contribution

The authors of the published paper [63] are Lukas Eigentler and Jonathan A Sher-

ratt. Lukas Eigentler conceptualised the research, formulated the mathematical

model, performed both the analytical and numerical analyses of the model, wrote

the paper draft and reviewed and edited the manuscript. Jonathan A Sherratt

conceptualised the research, reviewed and edited the manuscript and provided su-

pervision.

Abstract

Vegetation patterns are a ubiquitous feature of water-deprived ecosystems.

Despite the competition for the same limiting resource, coexistence of sev-

eral plant species is commonly observed. We propose a two-species reaction-

diffusion model based on the single-species Klausmeier model, to analytically

investigate the existence of states in which both species coexist. Ecologically,

the study finds that coexistence is supported if there is a small difference in

the plant species’ average fitness, measured by the ratio of a species’ capabil-

ities to convert water into new biomass to its mortality rate. Mathematically,

coexistence is not a stable solution of the system, but both spatially uniform

and patterned coexistence states occur as metastable states. In this context, a

metastable solution in which both species coexist corresponds to a long tran-

sient (exceeding 103 years in dimensional parameters) to a stable one-species

state. This behaviour is characterised by the small size of a positive eigen-

value which has the same order of magnitude as the average fitness difference

between the two species. Two mechanisms causing the occurrence of meta-

stable solutions are established: a spatially uniform unstable equilibrium and

a stable one-species pattern which is unstable to the introduction of a compet-

itor. We further discuss effects of asymmetric interspecific competition (e.g.

shading) on the metastability property.
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5.2 Introduction

Patterns of vegetation in semi-arid climate zones are a prime example of a self-

organisation principle in ecology [47, 222]. One of the main mechanisms that creates

such a mosaic of biomass and bare soil is a modification of soil properties by plants

that induces a water redistribution feedback loop [129–131, 166]. On bare ground

only small amounts of water are able to infiltrate into the soil and water run-off

occurs, while in regions covered by biomass the soil’s water infiltration capacity

is increased. Dense plant patches therefore act as sinks and deplete soil water in

regions of bare ground [65, 209]. This redistribution of the limiting resource drives

further growth in vegetation patches and thus closes the feedback loop.

Drylands account for approximately 41% of the Earth’s land mass and are home

to a similar proportion (38%) of the world’s human population. The sizes of arid

and semi-arid regions that suffer from land degradation are expected to increase

over the coming decades due to climate change [162]. Vegetation patterns are a

characteristic feature of such fragile ecosystems. Patterns have been detected in

semi-desert regions in the African Sahel [48, 141, 208, 239, 241], Somalia [79, 83],

Australia [55, 84, 214], Israel [24, 182] and Mexico and the US [38, 48, 136, 137,

152, 153]. Changes to characteristic features of vegetation patterns in these regions

such as the pattern wavelength, the area fraction covered by biomass, or the recovery

time from perturbations can act as early indicators of desertification as they provide

a useful tool in predicting further changes to ecosystems [39, 45, 78, 96, 164, 170,

246]. This is an issue of considerable socio-economic importance since agriculture is

a major contributor to the economy in many drylands [218]. For example, in sub-

Saharan Africa livestock frequently graze on spatially patterned vegetation. Thus

changes in vegetation levels have a major effect on the livestock sector, which makes

a very significant contribution to GDP, e.g. 20% in Chad, 15% in Mali, 12% in

Niger and 7.5% in Burkina Faso [51, 219], with involvement of high proportions of

the population (e.g. 40% in Chad [51]).

Due to the temporal and spatial scales involved in the evolution of vegetation

patterns, these ecosystems cannot be recreated in a laboratory setting. To gain a

better understanding of the pattern dynamics a number of mathematical models

have been proposed (see [21, 247] for reviews). In particular, modelling efforts

based on partial differential equations, most notably by Gilad et al. [74, 75] and

HilleRisLambers et al. [86, 163], provide a rich framework for mathematical analysis.

One model that stands out due to its simplicity is the Klausmeier model [99], which

provides a deliberately basic description of the plant-water dynamics in semi-arid

environments. The highly accessible nature of the model enables a detailed model

analysis (e.g. [20, 34, 61, 184–186, 190–192, 194, 199, 221]). Recent advances in
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remote sensing technology using satellite data provide a promising tool to test model

predictions on pattern resilience [10, 72].

Most models in this context only consider a single plant species or combine sev-

eral species into one single variable. However, vegetation patches often consist of a

mix of herbaceous and woody species, where the latter can usually be found in the

centre of a patch, surrounded by the former [41, 179]. Previous simulation-based

studies of dryland ecosystem models have indeed been able to reproduce patterns in

which two species coexist by considering a variety of different mechanisms and feed-

backs that enable diversity in ecosystems [16, 27, 76, 145, 220]. One such facilitative

mechanism occurs in a system of two species in which only one plant type induces a

pattern forming feedback. If, additionally, the non-pattern forming species is super-

ior in its water uptake and dispersal capabilities, then the pattern-forming species

can act as an ecosystem engineer to facilitate coexistence of both species in patterned

form [16, 145]. Even if patterns in which two species coexist are not observed as

long-term solutions of a system, they can feature in a transition between two stable

states. Gilad et al. [76] briefly report on the observation of coexistence patterns as a

slow (several hundred years) transient during which patterns form due to facilitation

between two species before eventually one of the species becomes extinct as com-

petitive feedbacks take over. A different mechanism that enables coexistence of two

species in both uniform and spatially patterned settings is adaptation to different

ecological niches, such as soil moisture [27, 221].

In-phase spatial patterns are not the only phenomenon that is studied in the

context of species coexistence. The existence of a multitude of localised patterns of

one species in an otherwise uniform cover of a second species (homoclinic snaking)

has also been observed as a possible form of coexistence in a mathematical model

[103]. The solution arises from a model that assumes a trade-off between root

and shoot growth causing a balance between the competition for water and for

light that supports coexistence. Other models are not able to make any statement

on the coexistence of species, but yield valuable information on facilitation and

competition between the plant types based on differences in traits such as their

dispersal behaviour [157].

The savanna biome has also been studied by various non-spatial models that

describe the dynamics of the relative abundances of grass, trees and water. While

such models are unable to make any statements on the formation of spatial patterns,

they still provide valuable insights into coexistence-preserving effects of processes

such as precipitation intermittency [43], facilitation by grasses towards trees [204]

or fire disturbances [15, 175].

Previous model analyses on species coexistence in semi-arid landscapes have

mainly focussed on feedback loops induced through differences in the plant species’
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traits and their effects on multi-species plant communities. We are not aware of any

studies that investigate effects of the differences in basic properties such as plant

mortality or plant growth rate on semi-arid vegetation patterns. In this chapter we

aim to analytically address the question how the difference between two plant types

can give rise to a multispecies metastable vegetation pattern (a unstable pattern

whose instability is caused by a very small unstable eigenvalue [154]) and how the

pattern’s properties are affected by changes to the difference between the species.

To do this we introduce a multi-species model based on the Klausmeier model

in Section 5.3. Numerical simulations of the model presented in Section 5.4 suggest

two different origins of metastable coexistence patterns. These two pathways into

the problem are closely examined through a linear stability analysis in Sections 5.5

and 5.6. Finally, we discuss our results in Section 5.7.

5.3 Model

In this section we lay out the framework used in this chapter to analyse the coex-

istence of grass and trees in dryland ecosystems. We propose a model based on the

extended Klausmeier model [99], which in dimensional form is

∂u

∂t
=

plant growth︷ ︸︸ ︷
c1c2u

2w −

plant
mortality︷︸︸︷
c3u +

plant dispersal︷ ︸︸ ︷
c4
∂2u

∂x2
, (5.1a)

∂w

∂t
= c5︸︷︷︸

rainfall

− c6w︸︷︷︸
evaporation

− c2u
2w︸ ︷︷ ︸

water uptake
by plants

+ c7
∂w

∂x︸ ︷︷ ︸
water

advection

+ c8
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

, (5.1b)

where u(x, t) is the weight of plants per unit area and w(x, t) is the mass of water

per unit area in the one-dimensional space domain x ∈ R at time t > 0. The water

supply (precipitation) of the system is assumed to be constant at rate c5, while

evaporation and plant loss effects are assumed to be proportional to the respective

densities at rates c6 and c3, respectively. The nonlinearity in the terms describing

water uptake and biomass growth arises due to a soil modification by plants. The

term is the product of the density of the consumer u and of the available resource

c2uw, which corresponds to water being able to infiltrate into the soil. The depend-

ence on the plant density u in the latter term occurs due to a positive correlation

between the plant density and the soil surface’s permeability [38, 165, 222]. Plant

growth is assumed to be proportional to water uptake [167, 171] and water to bio-

mass conversion takes place at rate c1. In its original setting, the Klausmeier model

is formulated to describe the dynamics on sloped terrain on which water flow down-

hill is modelled by advection at rate c7. An extension includes diffusion of water
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at rate c8 to account for water redistribution on flat ground and is well established

now (e.g. [95, 199, 225, 247]). Plant dispersal is also modelled by a diffusion term

(with diffusion rate c4).

Both on flat ground and on sloped terrain (5.1) captures the formation of pat-

terns for sufficiently low levels of precipitation and their properties have been stud-

ied extensively [99, 184–186, 190–192, 194, 199]. In (5.1) the plant density u either

describes one single species or accounts for the totality of all plant types in the

ecosystem. While an ecosystem rarely consists of only one single species, estimation

of species-dependent parameters such as the plant mortality rate c3 may be imprac-

tical if u is comprised of many different species for which parameter estimates differ

significantly (see for example estimates for tree and grass species by Klausmeier

[99]).

An extension of (5.1) that accounts for the differences between plant species in

the same ecosystem can be obtained by separating the plant density u into n ∈ N
different species ui, i = 1, . . . , n that satisfy (5.1) with an appropriate set of para-

meters in the absence of all other species. The model arising from this assumption

is

∂ui
∂t

=

plant growth︷ ︸︸ ︷
k

(i)
1 wui

(
n∑
j=1

k
(j)
2 uj

)
−

plant
mortality︷ ︸︸ ︷
k

(i)
3 ui +

plant dispersal︷ ︸︸ ︷
k

(i)
5

∂2ui
∂x2

, (5.2a)

∂w

∂t
= k6︸︷︷︸

rainfall

− k7w︸︷︷︸
evaporation

−w

(
n∑
j=1

uj

)(
n∑
j=1

k
(j)
2 uj

)
︸ ︷︷ ︸

water uptake by plants

+ k8
∂w

∂x︸ ︷︷ ︸
water

advection

+ k9
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

. (5.2b)

for i = 1, . . . , n. In this multi-species model, the term describing water uptake by

plants is, as in (5.1), the product of the water density w, the total plant density∑n
j=1 uj and the soil’s infiltration capacity

∑n
j=1 k

(j)
2 uj. The species-dependent con-

stants k
(i)
2 account for the plant types’ different contributions to the soil’s properties.

The summands in
∑n

j=1 uj correspond to the consumption of water by each single

species and are therefore not replicated in the term describing plant growth. Thus,

the addition of new biomass of species ui with water to biomass conversion rate k
(i)
1

only depends on the water density, the soil’s infiltration capacity and the density

of species ui itself. The remaining assumptions are identical to those taken in the

formulation of (5.1), i.e. k
(i)
3 and k

(i)
5 denote the mortality and diffusion rates of

species ui, respectively; k6 is the constant amount of rainfall which adds water to

the system; and k7, k8, and k9 are the evaporation, advection and diffusion rates of

water, respectively.
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In (5.2) no direct interspecific interaction takes place. Instead plant species only

compete indirectly through depletion of the limiting resource - water. Models of this

type, in which species compete for the same limiting resource without any direct

competition between the different types do not provide a framework able to describe

coexistence as the species that can tolerate the lowest level of the limiting resource

outcompetes all competitors [212]. Thus, a description of an ecosystem in which

plant species coexist needs to take interspecific dynamics, such as shading, into

account.

For simplicity we restrict the model to a system on flat ground of two plant

species u1 and u2 only, in which one species inhibits the other by increasing its

competitor’s mortality rate but its own mortality rate remains unaffected by the

presence of the other species. An alternative approach to model direct interspecific

competition would be a reduction of a species’ biomass growth rate [103]. A classic

example of such an one-sided inhibitory direct interaction are two species, such as

a herbaceous and a woody species, where the latter grows much taller than the

former and thus imposes a shading effect on its competitor. Shading may also

have a facilitative effect on plants and induce a positive feedback loop due to a

reduction in evaporation [16, 76]. In contrast to a one-sided inhibitory shading effect,

shading-induced evaporation reduction affects both species as beneficial effects occur

indirectly through a variation in resource availability. Thus, the nonlinearity in

the plant densities of the water consumption and plant growth terms can account

for such a beneficial effect as it collectively describes all positive feedback loops

increasing the growth of biomass.

Adding an inhibitory shading term to (5.2) with n = 2, we propose the model

studied in this chapter, which is

∂u1

∂t
=

plant growth︷ ︸︸ ︷
k

(1)
1 wu1

(
k

(1)
2 u1 + k

(2)
2 u2

)
−

plant
mortality︷ ︸︸ ︷
k

(1)
3 u1 −

interspecific
competition︷ ︸︸ ︷
k4u1u2 +

plant dispersal︷ ︸︸ ︷
k

(1)
5

∂2u1

∂x2
, (5.3a)

∂u2

∂t
=

plant growth︷ ︸︸ ︷
k

(2)
1 wu2

(
k

(1)
2 u1 + k

(2)
2 u2

)
−

plant
mortality︷ ︸︸ ︷
k

(2)
3 u2 +

plant dispersal︷ ︸︸ ︷
k

(2)
5

∂2u2

∂x2
, (5.3b)

∂w

∂t
= k6︸︷︷︸

rainfall

− k7w︸︷︷︸
evaporation

−w (u1 + u2)
(
k

(1)
2 u1 + k

(2)
2 u2

)
︸ ︷︷ ︸

water uptake by plants

+ k9
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

. (5.3c)

The shading effect causes species u2 to impose an additional mortality effect on

u1 that is dependent on the density u2, while u1 does not have such an effect on

u2. The results presented in this chapter are robust to changes in the functional
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response of this shading effect. Results for shading effects with a Holling type

II and Holling type III functional response show no qualitative difference to the

algebraically simpler term in (5.3). Table 5.1 provides an overview of parameter

estimates used in the model. As indicated in the table, we were able to obtain

estimates for parameters from previous models on dryland vegetation, except for

the rate of the direct interspecific interaction k4. However, our model analysis in

Sections 5.5 and 5.6 suggests a suitable range for the shading parameter that yields

biologically relevant results and we briefly discuss effects caused by deviations from

this range.

A suitable nondimensionalisation for the model is

u1 =

(
k7

k
(1)
2

) 1
2

ũ1, u2 =

(
k7

k
(1)
2

) 1
2

ũ2, w =
k

1
2
7

k
(1)
1

(
k

(1)
2

) 1
2

w̃,

x =

(
k

(1)
5

k7

) 1
2

x̃, t =
1

k7

t̃.

The model thus becomes

∂u1

∂t
= wu1 (u1 +Hu2)−B1u1 − Su1u2 +

∂2u1

∂x2
, (5.4a)

∂u2

∂t
= Fwu2 (u1 +Hu2)−B2u2 +D

∂2u2

∂x2
, (5.4b)

∂w

∂t
= A− w − w (u1 + u2) (u1 +Hu2) + d

∂2w

∂x2
, (5.4c)

after dropping the ·̃’s for brevity, where

A =
k

(1)
1

(
k

(1)
2

) 1
2
k6

k
3
2
7

, B1 =
k

(1)
3

k7

, B2 =
k

(2)
3

k7

, S =
k4(

k
(1)
2 k7

) 1
2

,

F =
k

(2)
1

k
(1)
1

, H =
k

(2)
2

k
(1)
2

, D =
k

(2)
5

k
(1)
5

, d =
k9

k
(1)
5

.

The constants A and Bi are combinations of several of the original model’s paramet-

ers, but represent rainfall and plant mortality, respectively. The ratios F , H and D

describe the differences in the plant species’ water to biomass conversion rates, the

effects on the soil’s infiltration capacity and the diffusion coefficients, respectively.

Finally, d quantifies the ratio of the rate of water diffusion to that of the diffusion of
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Parameter Units Estimates Description

k
(1)
1

(kg biomass)
(kg H20)−1

0.003 [99],
0.007 [16]

Water to biomass conver-
sion rate for species u1

k
(2)
1

(kg biomass)
(kg H20)−1

0.002 [99],
0-0.01 [16]

Water to biomass conver-
sion rate for species u2

k
(1)
2

m4 year−1

(kg biomass)−2 100 [99] Effect of plant species u1

on water infiltration into
the soil

k
(2)
2

m4 year−1

(kg biomass)−2 1.5 [99] Effect of plant species u2

on water infiltration into
the soil

k
(1)
3 year−1 1 [204],

1.8 [99]
Rate of plant loss for spe-
cies u1

k
(2)
3 year−1 0.023 [204],

0.18 [99], 1.2 [75]
Rate of plant loss for spe-
cies u2

k4
m2 year−1

(kg biomass)−1 - (see text) Interspecific competition
(shading)

k
(1)
5 m2 year−1 1 [99, 199], 36.5 [16] Rate of diffusion of u1

k
(2)
5 m2 year−1 6.25 · 10−4 [75],

1 [99]
Rate of diffusion of u2

k6
(kg H20)
m−2 year−1

250-750 [99],
0-1000 [75],
150-1200 [204],
0-365 [16]

Rainfall

k7 year−1 2 [16], 4 [75, 99, 199],
8 [204]

Rate of evaporation

k9 m2 year−1 500 [199], Rate of water diffusion
Parameter Scaling Estimates Description

A k
(1)
1 (k

(1)
2 )

1
2k6k

− 3
2

7 0.94-2.8 [99] Rainfall

B1 k
(1)
3 k−1

7 0.125 [204], 0.45 [99] Plant loss of u1

B2 k
(2)
3 k−1

7

0.0029 [204],
0.045 [99]

Plant loss of u2

F k
(2)
1 (k

(1)
1 )−1 0-1 [16], 0.67 [99] Ratio of plants’ water to

biomass conversion rates

H k
(2)
2 (k

(1)
2 )−1 0.015 [99] Ratio of plants’ effects on

water infiltration into soil

S k4(k
(1)
2 k7)−

1
2 - (see text) Shading effect

D k
(2)
5 (k

(1)
5 )−1 0-1 [16, 75, 99] Ratio of plant species’ dif-

fusion rates

d k9(k
(1)
5 )−1 500 [199] Ratio of water and plant

species u1 diffusion rates

Table 5.1: Overview of parameters in (5.3) and (5.4). Full caption overleaf.
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Table 5.1 (cont.): Overview of parameters in (5.3) (upper half) and (5.4) (lower
half). This table shows both the dimensional parameters in model (5.3) and the
nondimensional parameters in (5.4), including their units (dimensional parameters)
or scalings (nondimensional parameters), the estimated values that we use, and a
brief description.

plant species u1. Table 5.1 includes estimates for the nondimensional parameters.

In the analysis of the model we assume that u1 is a herbaceous species and

allow u2 to vary between another grass species and a woody vegetation type. The

parameters of u1 are fixed throughout the analysis and act as a reference point.

To investigate how the difference between two plant species affects the plant-water

dynamics of the system, the parameters of u2 are varied and comparisons to the

fixed species u1 are made. For brevity we refer to the two plant densities as grass

and trees, even if u2 differs only slightly from u1. Parameter estimates (see Table

5.1) suggest that trees’ rate of mortality is less than that of grasses (B2 < B1),

trees convert water into biomass less efficiently (F < 1), trees affect the soil’s water

infiltration rate less severely per unit biomass (H < 1) and trees disperse at a slower

rate than grass (D < 1). We further assume that the inhibitory effect of shading

intensifies as the species difference increases. Thus only this parameter region is

analysed. In particular, to define a measure of species difference we introduce a

parameter χ ∈ [0, 1] that describes the extent to which the species differ. Thus we

set

B2 = B1 − χ(B1 − b2), F = 1− χ(1− f), H = 1− χ(1− h),

S = sχ, D = 1− χ(1−D0),

(5.5)

where B1 is set to a typical mortality rate of a herbaceous species, b2 to that of a

woody species and f , h and D0 to the smallest respective ratios between two differing

species. If the species are the same (i.e. χ = 0), then B2 = B1, F = H = D = 1

and S = 0. In this case, (5.4) simplifies to

∂ (u1 + u2)

∂t
= w (u1 + u2)2 −B1 (u1 + u2) +

∂2 (u1 + u2)

∂x2
, (5.6a)

∂w

∂t
= A− w − w (u1 + u2)2 + d

∂2w

∂x2
, (5.6b)

by adding (5.4a) and (5.4b). This simplified model is the extended Klausmeier

model (5.1) in nondimensional form on flat ground for plant density u1 + u2 and

water density w.
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5.4 Numerical Solutions of the Model

To motivate the analysis presented in Sections 5.5 and 5.6 we present some typical

solutions of (5.4) that are obtained by numerical integration. Despite the inclusion

of direct interspecific competition in (5.4) and the associated existence of a pair of

equilibria in which both species coexist (see Section 5.6), the system converges to

a single-species state for any choice of parameters. The nature of this long-term

behaviour depends on the parameter values used in the integration and may be a

uniform or patterned state of either species. The transient to such an equilibrium

state in which only one of the plant types is present may, however, occur as a very

slow process (exceeding 103 years in dimensional parameters) in which both species

coexist in either a patterned configuration or uniformly in space. Such a unstable

state which nevertheless persists as a solution for a very long time (compared to the

time taken to emerge from some initial configuration) is referred to as a metastable

state in this context.

In the parameter setting (5.5) two distinct initial configurations from which such

metastable states arise are established. If the initial condition is set to a state in

which both plant species and the water density are uniform in space with a random

perturbation added, then the solution remains in a metastable configuration in which

both species coexist for a long time. If the rainfall is sufficiently low, the solution

develops a patterned appearance in all three variables during the long transient.

Eventually the metastable state reduces to a stable single-species equilibrium. The

type of this equilibrium depends on the choice of parameters and in particular on

the level of rainfall (see Figure 5.1a). A sufficiently high level of rainfall leads to a

spatially uniform solution, while lower amounts of precipitation cause convergence

to a single-species pattern. The initial densities for the uniform state are chosen

based on the steady states of the one-species Klausmeier model (5.1) [99].

A similar behaviour is exhibited by the model’s solution if the initial condition

of the system is set to a tree-only pattern that is obtained from the one-species

Klausmeier model (5.1). To this configuration a low density of the grass variable u1

is added, as well as a random perturbation in all three variables. In this scenario,

the grass density u1 quickly adopts a pattern that is in phase with the tree density

u2. The solution remains in this configuration for a long time, but a sharp reduction

in tree density and changes to the wavelength of the pattern may occur. Eventually

a transition to a grass-only equilibrium occurs. As described above, the choice of

this grass-only equilibrium to which the system eventually converges depends on the

precipitation parameter A (see Figure 5.1b).

Such metastable patterns are not only observed for the parameter values chosen

in Figure 5.1, but occur for a wide range of parameters. This motivates a closer
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Figure 5.1: Numerical solution of the multi-species model (5.4) showing metastable
patterns of species coexistence. The simulations are performed by discretising the
space domain into M ∈ N equidistant points, which yields a system of 3M ordinary
differential equations. Periodic boundary conditions are imposed on the endpoints
of the domain. The resulting system is integrated using the MATLAB ODE solver
ode15s. In (a), A = 1.5 and χ = 0.2 and the system is initially perturbed randomly
from a state in which all densities are uniform in space. In (b) A = 2.4 and χ = 0.8
and the simulation is started from a tree-pattern to which a random perturbation is
added. Both initial conditions are obtained from results of the one-species extended
Klausmeier model (5.1). The other parameter values in all of the figures are B1 =
0.45, b2 = 0.0055, f = 0.01, h = 0.01, s = 10−3, d = 500 and M = 29.

investigation of the coexistence patterns and in particular their metastability. One

possibility to gain a comprehensive understanding of the patterns’ properties would

be a systematic numerical investigation of the whole parameter space. Such an

approach could involve the tracking of the time the system spends in the coexist-

ence state under variations of both single parameters and combinations of multiple

parameters, as well as a closer investigation of the pattern’s properties such as its

wavelength . However, the number of different parameters in the model poses a

significant challenge for this approach. Instead, linear stability analysis can be used

to study the existence and stability of such patterns, which is presented in Sections

5.5 and 5.6.

5.5 Metastable coexistence patterns arising from stable one-species pat-

terns

A common tool to study pattern formation in reaction-diffusion systems is linear

stability analysis. Motivated by the simulation visualised in Figure 5.1b, we use

linear stability analysis to discuss the emergence of metastable patterns in which
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both species coexist from a stable one-species Turing-type pattern into which a new

species is introduced.

Linear stability analysis is based on the growth/decay of perturbations to equi-

libria of the system. Depending on the choice of parameters (5.6) has up to seven

spatially homogeneous steady states; a trivial state describing desert which is stable

in the whole parameter space, and pairs of semi-trivial single-species steady states as

well as a pair of equilibria that correspond to coexistence of both species. To differ-

entiate between the two types of patterns addressed in this section, we strictly refer

to a pattern to be of Turing-type if it emerges from a steady state that is linearly

stable to spatially uniform perturbations and becomes unstable upon introduction

of spatial variation in the perturbation. An equilibrium of (5.6) is linearly stable

to spatially homogeneous perturbations if all eigenvalues λu ∈ C of the system’s

Jacobian at the steady states satisfy <(λu) < 0. For (5.4), the Jacobian is given by

J(u1, u2, w) = (j(u1, u2, w)k`), k, ` = 1, 2, 3, where

j (u1, u2, w)11 = (Hw − S)u2 + 2u1w −B1,

j (u1, u2, w)12 = u1 (Hw − S) ,

j (u1, u2, w)13 = u1 (u1 +Hu2) ,

j (u1, u2, w)21 = Fu2w,

j (u1, u2, w)22 = 2Fw
(u1

2
+Hu2

)
−B2,

j (u1, u2, w)23 = Fu2 (u1 +Hu2) ,

j (u1, u2, w)31 = −w (2u1 + (1 +H)u2) ,

j (u1, u2, w)32 = −w ((1 +H)u1 + 2Hu2) ,

j (u1, u2, w)33 = −u2
1 − (1 +H)u1u2 −Hu2

2 − 1.

(5.7)

For an equilibrium that is linearly stable to spatially uniform perturbations, Turing-

type patterns emerge if there exists a wavenumber k > 0 such that at least one eigen-

value λs ∈ C of J−diag(k2, Dk2, dk2) has positive real part, i.e. maxk≥0,λs{<(λs)} >
0.

Although maxk≥0,λs{<(λs)} > 0 is a necessary condition for the development of

a pattern from a spatial perturbation, maxλu{<(λu)} < 0 is not necessarily required.

Spatial patterns also form if 0 < maxλu{<(λu)} � maxk≥0,λs{<(λs)}. In this case

a pattern (and the corresponding equilibrium) is unstable but the difference in the
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growth rates gives rise to a transient pattern but the solution eventually tends to

a stable state. In particular, if maxλu{<(λu)} � 1, this transient occurs at a slow

rate as visualised in Figure 5.1 and the pattern is metastable.

5.5.1 Turing-type patterns

Investigation of the existence of such metastable patterns requires a understanding

of the model’s single-species Turing-type patterns. Due to the nature of the model,

the linear stability analysis of the single-species equilibria is almost identical to that

of the extended Klausmeier model on flat ground, in which patterns emerge from a

Turing bifurcation. The considerations for (5.4) only differ from those of the Klaus-

meier model through the existence of an additional condition that determines the

stability to the introduction of the second species. Moreover, in case of the tree-only

equilibria the parameters F , H and D alter the stability conditions quantitatively.

For each plant species, there exists a pair of semi-trivial steady states in which

only one plant species prevails. Provided A > AGmin := 2B1, the grass equilibrium is

(
uG,±1 , 0, wG,±

)
=

(
A±

√
A2 − 4B2

1

2B1

, 0,
2B2

1

A±
√
A2 − 4B2

1

)
,

where the superscript G identifies it as a single-species grass state and ± indicates

the choice of sign. Similarly, the pair of steady states describing a tree-only state is

given by

(
0, uT,±2 , wT,±

)
=

(
0,

ξ±
2B2H

,
2B2

2

Fξ±

)
,

provided the precipitation parameter exceeds ATmin,ex := 2B2F
−1H−(1/2), where ξ± =

AFH ±
√
A2F 2H2 − 4B2

2H.

Stability to Spatially Uniform Perturbations

The initial step in determining conditions for the existence of Turing-type patterns

is linear stability analysis in a spatially uniform setting. Assuming no space de-

pendence in (5.4), an equilibrium’s stability is determined by the eigenvalues of the

Jacobian with entries (5.7) evaluated at the equilibrium. For the grass-only steady
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state (uG,±1 , 0, wG,±) the Jacobian is

JG,± =


B1

2B2
1H − SA− S

√
A2 − 4B2

1

2B1

(
A±

√
A2 − 4B2

1

)2

4B2
1

0 B1F −B2 0

−2B1 −B1 (1 +H) −
A
(
A±

√
A2 − 4B2

1

)
2B2

1


.

Thus, the eigenvalues λG,±u ∈ C satisfy

(
B1F −B2 − λG,±u

)
det


B1 − λG,±u

(
A±

√
A2 − 4B2

1

)2

4B2
1

−2B1 −
A
(
A±

√
A2 − 4B2

1

)
2B2

1

− λG,±u

 = 0.

(5.8)

The eigenvalue λG,±u,1 := B1F−B2 accounts for the introduction of the tree species u2,

while the remaining two eigenvalues are independent of any parameters associated

with u2. Indeed, the matrix in (5.8) is identical with that of the corresponding mat-

rix obtained in the linear stability analysis of the Klausmeier model in which only

a single species is considered. Thus (uG,+1 , 0, wG,+) is linearly stable to spatially ho-

mogeneous perturbations if A > AGmin, B2 > B1F and B1 < 2, while (uG,−1 , 0, wG,−)

is linearly unstable for any choice of parameters [99, 185].

Similar to the analysis of the grass steady state, the single-species tree equi-

librium (0, uT,−2 , wT,−) is linearly unstable in the whole parameter space, whereas

(0, uT,+2 , wT,+) is linearly stable to spatially homogeneous perturbations if A >

ATmin,ex, B2 < 2 and

S >
2B2H (B2 −B1F )

Fξ+

. (5.9)

Similar to the stability conditions of the single-species grass equilibrium, only cri-

terion (5.9) accounts for the stability of (0, uT,+2 , wT,+) to the introduction of u1.

Thus, the stable (provided A > ATmin,ex and B2 < 2) single-species tree equilibrium

becomes unstable to perturbations in the grass variable u1 if the shading parameter

is sufficiently small (see the difference between Figures 5.2a and 5.2c). Rearranging

(5.9) and combining it with the threshold ATmin,ex for existence of the steady state
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yields that (0, uT,+2 , wT,+) exists and is linearly stable if B2 < 2 and

A > ATmin :=


2B2

F
√
H

if S > Sc

B2 ((B2
1H + S2)F 2 − 2B1B2FH +B2

2H)

(B2 −B1F )F 2HS
if S < Sc

, (5.10)

where Sc :=
√
H(B2 − B1F )F−1. This lower bound is derived through calculation

of the eigenvalues λT,±u ∈ C of the Jacobian at (0, uT,±2 , wT,±) which satisfy(
2B2H (B2 −B1F )− SFξ±

2FHB2

− λT,±u
)

det
(
JT,± − λT,±u I2

)
= 0,

where

JT,± =

 B2

Fξ2
±

4B2
2H

−2B2

F
−AFξ±

2B2
2

 ,

and I is the identity matrix. Imposing a negativity condition on the root λC,+u

given by the first factor of this product yields (5.9), while the remaining two ei-

genvalues are both negative if and only if tr(JT,±) < 0 and det(JT,±) > 0. For

(0, uT,−2 , wT,−), det(JT,−) < 0 for any choice of parameters yielding its instability,

while for (0, uT,+2 , wT,+), det(JT,+) > 0. Finally, stability requires tr(JT,+) > 0 which

holds for all B2 < 2.

Bistability of the tree-only steady state and the grass-only steady state requires

stability of both semi-trivial equilibria to the introduction of the other species. Sta-

bility of the single-species grass equilibrium (uG,+1 , 0, wG,+) to the introduction of

the tree species u2, i.e. B2 > B1F , occurs if the grass species has a superior water

to biomass conversion to mortality rate, which we define to be a measure of a spe-

cies’ average fitness. To balance this disadvantage, stability of the tree-only state

(0, uT,+2 , wT,+) to the introduction of the grass species u1 necessitates the shading

effect to be sufficiently large. Indeed, if B2 > B1F and S < Sc, then

ATmin =
B2 ((B2

1H + S2)F 2 − 2B1B2FH +B2
2H)

(B2 −B1F )F 2HS
,

which is decreasing in S below the threshold Sc. Thus, in the parameter region

in which the grass-only steady state is stable, a decrease in the inhibitory shading

effect of trees on grass increases the precipitation requirement for bistability of the

tree-only and grass-only steady state. This is visualised in Figures 5.2a and 5.2c.

The threshold Sc defined in (5.10), which is of the same order of magnitude as the

average fitness difference B2 − B1F between the species, describes the intensity of
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shading above which the tree equilibrium (0, uT,+2 , wT,+) is stable to the introduction

of the grass-species u1 for any precipitation levels that guarantee the existence of

the steady state. In other words, if the shading effect of u2 on u1 is sufficiently large,

then (0, uT,+2 , wT,+) is always linearly stable to the introduction of the grass-species

u1.

The bounds on the plant mortality parameters in the derivations above are suf-

ficient but not necessary. However, parameter estimates consistently indicate that

B1 < 2 and B2 < 2 [99, 204] and thus we restrict the analysis to this region.

Conditions for the formation of Turing-type patterns

Having established stability conditions for the single-species equilibria in a spatially

uniform setting, we turn to spatially non-uniform perturbations of the steady states

to determine the loci of Turing bifurcations. Initially, we do this in the context of

the single-species model obtained by setting one of the plant densities to zero. This

reduces the multispecies model to the one-species Klausmeier model with water

diffusion (up to the constants F , H and D in case of (0, uT,+2 , wT,+)), for which

patterns form due to a diffusion-driven instability.

More precisely, for (uG,+1 , 0, wG,+) (5.4) reduces to

∂u1

∂t
= wu2

1 −B1u1 +
∂2u1

∂x2
,

∂w

∂t
= A− w − wu2

1 + d
∂2w

∂x2
,

which is the extended Klausmeier model on flat ground. The typical linear stability

analysis approach outlined above yields that a pattern-forming instability occurs for

AGmin < A < AG,+max :=

B
3
2
1 d

1
2

(
3B2

1d
2 + 7B1d− 8− 2

√
2B4

1d
4 + 6B3

1d
3 − 8B1d

) 1
2

dB1 + 1
, (5.11)

provided d > B−1
1 . If d < B−1

1 then AG,+max ∈ C and no Turing bifurcation occurs.

Similarly, setting u1 = 0 in (5.4), i.e. considering the tree-only steady state
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(0, uT,+2 , wT,+), yields

∂u2

∂t
= FHwu2

2 −B2u2 +D
∂2u2

∂x2
, (5.12a)

∂w

∂t
= A− w −Hwu2

2 + d
∂2w

∂x2
. (5.12b)

Considerations identical to those in the analysis of the extended Klausmeier model

show that an instability leading to the formation of a tree pattern occurs if

ATmin,ex < A < AT,+max :=

B
3
2
2 d

1
2

(
3B2

2d
2 + 7DB2d− 8D2 − 2

√
2B4

2d
4 + 6DB3

2d
3 − 8D3B2d

) 1
2

D
1
2FH

1
2 (dB2 +D)

, (5.13)

provided d > DB−1
2 . If d < DB−1

2 , then AT,+max ∈ C and no Turing bifurcation occurs.

Condition (5.13) is equivalent to the ratio d/D of the diffusion coefficients ex-

ceeding a critical threshold. Thus, a lower rate of diffusion of the woody species

increases the size of the parameter region supporting pattern formation. This phe-

nomenon is visualised in the stability diagrams 5.2a and 5.2b. It is important to

emphasise that the bifurcation point AT,+max is obtained by considering perturbations

in u2 and w only. The calculation of AT,+max does not take into account a possible

introduction of the grass species u1. Indeed, as the difference between Figure 5.2a

and 5.2c visualises, if the shading parameter S is sufficiently small, then there exists

a parameter region in which a single-species tree pattern is stable only in the context

of a single-species model. The instability to an introduction of the grass species u1

occurs due to an increase of ATmin, given by (5.10), for decreasing S. For sufficiently

small S this causes ATmin > ATmin,ex and thus a tree-only pattern cannot form for

ATmin,ex < A < ATmin if the assumption of u1 = 0 is relaxed. Similarly, the pattern

forming condition (5.11) obtained for (uG,+1 , 0, wG,+) only applies if the steady state

is stable to perturbations in u2, i.e. if B2 > B1F . In the stability diagrams in Figure

5.2 a state is only assumed to be stable if the introduction of the second species does

not cause destabilisation. Even though this restricts the bistability region of both

single-species equilibria, the numerical simulations presented in Section 5.4 suggest

that this restriction does not apply to metastable patterns in which both species

coexist. In particular, the simulation visualised in Figure 5.1b, which corresponds

to the (β) marker in Figure 5.2c, lies outside the bistability region. Indeed, the

parameter region ATmin,ex < A < ATmin, i.e. the region in which the tree-pattern is

stable in the one-species model but unstable to the introduction to the grass species,
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gives rise to a metastable pattern such as that shown in Figure 5.1b and is closely

examined in Section 5.5.2.

To address the effects caused by the difference between two plant species, we put

particular emphasis on the parameter region given by (5.5), where the difference is

described by a single parameter 0 < χ < 1 for simplicity. To focus on the possible

coexistence of both plant types, we further restrict the parameter region to that of

the grass-only steady state’s stability, i.e. A > 2B1 and B2 > FB1. The latter

condition holds for all 0 < χ < 1 if b2 > fB1. The lowest levels of precipitation

beyond the threshold A = 2B1 that separates the parameter region in which only

the trivial desert equilibrium is stable from bistability or tristability regions of plant

states and the bare soil state, only support grass patterns. For a sufficiently small

difference χ < χ1 between the grass and tree species, an increase of rainfall along the

precipitation gradient leads to a region in which the two patterned states are stable,

before the uniform grass-only steady state gains stability and eventually also the

uniform tree equilibrium becomes stable to form a parameter region in which there

is bistability of both uniform steady states. If the difference between the species is

larger than the threshold χ1, then no bistability of both patterned states is possible.

Instead, the uniform grass steady state becomes stable at rainfall levels that are

lower than those required for a tree pattern to form (Figures 5.2a, 5.2b and 5.2c).

Finally, if χ > χ2 > χ1, where the threshold χ2 may be larger than unity, the system

does not support the formation of tree patterns and there is a direct transition from

the parameter region that supports only the uniform grass equilibrium to the region

in which bistability of both uniform steady states occurs (Figure 5.2c).

5.5.2 Metastable Patterns

The results of the preceding linear stability analysis not only show the existence of

single-species Turing patterns, but in the parameter region ATmin,ex < A < ATmin also

that of metastable patterns, such as the pattern visualised in Figure 5.1b, in which

both species coexist.

Provided it exists (A > ATmin,ex), the tree-only equilibrium (0, uT,+2 , wT,+) is stable

to spatially uniform perturbations in the tree density u2 and the water density w

for all biologically relevant parameter values and tree patterns emerge from the

steady state due to a Turing-type instability for sufficiently low precipitation levels.

An additional stability condition (5.9) arises from the introduction of the grass

species u1. If (0, uT,+2 , wT,+) is unstable to the introduction of u1 (A < ATmin), the

eigenvalue λT,+u,1 corresponding to spatially uniform perturbations is of small size and

thus gives rise to a metastable solution as shown in Figure 5.1b. If in addition

<(λG,+s,1 (k))� λT,+u,1 , where λT,+s,1 (k) ∈ C is the growth rate corresponding to a spatial
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Figure 5.2: Stability diagram for the semi-trivial steady states. The coloured areas
combine the results of the linear stability analysis of the full model to spatially
homogeneous perturbations and the respective one-species models in which spatially
heterogeneous perturbations of the semi-trivial steady states lead to patterns in the
parameter region (5.5). The solid line indicates the parameter region in which tree
patterns form in the one-species model (5.12). The difference between (a) and (c)
shows that this does not coincide with the corresponding parameter region in the
multispecies model if S is small. The desert steady state is stable in the whole
parameter plane. The area indicated in the figure only shows the region in which it
is the only stable state. In (a) s = 1 and D = 1−χ(1−0.01), which gives S < Sc for
all 0 < χ < 1; in (b) s = 1 and D = 1; and in (c) s = 10−3 and D = 1−χ(1− 0.01).
The inset in (c) shows the behaviour around χ = χ2. The other parameter values in
all of the figures are B1 = 0.45, b2 = 0.0055, f = 0.01, h = 0.01 and d = 500. The
markers (α) and (β) refer to the parameter values used in the simulations presented
in Figure 5.1.
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perturbation with mode k > 0, the grass species quickly (compared to the time it

takes to reach the stable grass-only state) adopts a patterned appearance in phase

with the tree pattern during this transition. Indeed,

λT,+u,1 =
2B2H (B2 −B1F )

F
(
AFH +

√
A2F 2H2 − 4B2

2F
2H
) − S ≤ 2B2

AF 2
(B2 −B1F )� 1, (5.14)

because tree mortality B2 is of small size (see Table 5.1). Further, the condition

<(λG,+s,1 (k)) � λT,+u,1 is satisfied unless parameter values are close to the grass-only

steady state’s Turing bifurcation locus. Thus, if a grass population is introduced

into a stable tree pattern and causes destabilisation of this pattern as shown in

Figure 5.1b, the small size of the eigenvalue (if positive) yields a slow transition

to the stable grass-only state. The difference B2 − B1F plays a crucial role in the

metastability property as it is the cause of the pattern’s slow rate of destabilisation.

Ecologically the small size of this difference corresponds to similar average fitness

of both species. It is this balance that enables the coexistence of both species.

The significance of B2 − B1F is not a special feature of this particular case but

also causes the metastability of patterns originating from spatially uniform initial

conditions such as that used in the simulation visualised in Figure 5.1a. This is

discussed in more detail in Section 5.6.

Similar considerations suggest the possibility of metastable coexistence patterns

that arise from the introduction of the tree species into a stable grass pattern that

consequently becomes unstable. In this situation, however, the eigenvalue λG,+u,1 =

B1F −B2 that corresponds to the introduction of the tree species is not necessarily

small. Unless λG,+u,1 � 1, a perturbation of a grass pattern through the introduction

of trees yields a quick transition to a tree pattern as a positive but not small value

of B1F −B2 corresponds to a larger average fitness of the tree-species.

Wavelength

A key feature of any regular pattern is its wavelength. While an extensive study of

pattern wavelength requires tools from nonlinear analysis, linear stability analysis

provides an insight into the wavelength of the patterns close to the bifurcation

locus. Then the pattern wavelength is typically determined by the wavenumber that

corresponds to the largest growth rate. Given such a wavenumber kmax calculated

in the derivation of the Turing bifurcation points, the corresponding pattern has

wavelength L = 2π/kmax.

From the preceding linear stability analysis we find that the wavelength of the

tree species is increasing with the parameter χ. Thus, for a constant level of precip-

itation, the more tree-like a species is, the longer is its pattern wavelength (Figure
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5.3c). Such a comparison requires bistability of both patterned states, which is not

necessarily the case for all 0 ≤ χ ≤ 1, as indicated in Figure 5.3. The wavelength of

both species further increases with decreasing rainfall, which is in agreement with

results for the Klausmeier model on sloped terrain [185, 191].

The most unstable wavenumber is not necessarily the mode that is selected in a

pattern. Hysteresis is known to occur in the single-species Klausmeier model [188,

199] and may cause the selected mode to differ from the most unstable mode. It is

thus informative to obtain bounds on the wavelength from linear stability analysis.

These bounds show that both an increase in species difference and lower precipitation

increase the range of possible wavelengths (Figures 5.3a and 5.3b).

5.6 Metastable coexistence patterns originate from a coexistence equi-

librium

The analysis in Section 5.5 only explains patterns in which both species coexist in

the parameter region ATmin,ex < A < ATmin. The simulations presented in Section

5.4, however, suggest that metastable coexistence patterns occur in a wider range

of the precipitation parameter A. In this section we show that Turing-type patterns

of the tree species u2 are not the only origin of metastable patterns. Additionally,

metastable patterns of species coexistence can arise from an equilibrium in which

both species coexist, which is the subject of this section.

Besides the trivial and semi-trivial equilibria discussed in Section 5.5, (5.4) also

admits a pair of coexistence steady states (uC,±1 , uC2 , w
C,±), where similar to the

notation used for the single species states the superscript C identifies the equilibrium

as a coexistence state. The equilibria satisfy

uC,±1 =
1

2B2

(
AF −B2 (1 + F )uC2

±
√(

AF +B2 (1 + F )uC2
)2 − 4B2

(
−AFHuC2 +B2

(
1 +H

(
uC2
)2
)))

,

uC2 =
B2 − FB1

SF
, wC,± = A− B2

F

(
uC,±1 + uC2

)
,

under suitable conditions that ensure their existence and biological relevance. For

(uC,−1 , uC2 , w
C,−) these are B2 > B1F and

max

{
B2

(
uC2 (1−H) + 2

)
F

,
B2u

C
2 (1 + F )

F

}
< A <

B2

(
1 +H

(
uC2
)2
)

FHuC2
,
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(a) Minimum wavelength. (b) Maximum wavelength.

(c) Wavelength arising from most unstable
wavenumber.

Figure 5.3: Single species pattern wavelength. This figure visualises the pattern
wavelengths of both single-species patterns calculated through linear stability ana-
lysis. The contours show the wavelength of the pattern of species u2 as its difference
from the grass species u1 increases, while the values on the A-axis correspond to
the wavelength of the grass pattern. Minimum (a), maximum (b) and wavelengths
corresponding to the most unstable mode (c) are shown. The parameter values are
B1 = 0.45, b2 = 0.0055, f = 0.01, h = 0.01, D0 = 0.01, and d = 500. The markers
(α) and (β) refer to the parameter values used in the simulations presented in Figure
5.1. For a comparison to the wavelengths of the coexistence pattern see Figure 5.7.
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while the corresponding conditions for (uC,+1 , uC2 , w
C,+) are B2 > B1F and

A > AC,+min :=

max

B2

(
uC2 (1−H) + 2

)
F

,min

B2u
C
2 (1 + F )

F
,
B2

(
1 +H

(
uC2
)2
)

FHuC2


 . (5.15)

Visualisations in this chapter are shown for the special parameter setting (5.5) and

F = H. In this situation changes to χ do not affect the nature of how the equilibrium

loses its relevance. If s > b2−B1f , then (uC,+1 , uC2 , w
C,+) ceases to exist at A = AC,+min ,

while otherwise A = AC,+min represents the threshold at which uC,+1 becomes negative

(see Figure 5.4). Similar considerations hold for (uC,−1 , uC2 , w
C,−). This equilibrium,

however, does not exhibit the metastability property which is the main focus of this

study and is therefore not considered further. It is noteworthy that there is nothing

special about the choice of F = H and results are robust to changes in F and H,

provided the rainfall minimum AC,+min remains in the biologically relevant parameter

region. Results presented in this chapter are also robust to changes in s. Finally,

we remark that the size of the shading parameter S needs to be similar to that of

the average fitness difference between both species B2 −B1F for the equilibrium to

remain in a biologically relevant region, as large (small) shading effects only support

coexistence at equilibrium if the density of u2 is low (high).

An initial conclusion that is drawn from calculation of the existence region of the

coexistence equilibria is that their existence is not required for metastable patterns

in which both species coexist to form and patterns outside the existence region of

(uC,±1 , uC2 , w
C,±) truly originate from a stable tree-only pattern as discussed in Sec-

tion 5.5. In particular, the simulation shown in Figure 5.1b is obtained by using

parameter values for which the coexistence steady states do not exist (see the (β)

marker in Figure 5.4a). The parameter region considered in this section may, how-

ever, overlap with that considered in Section 5.5, and no general statement on the

sizes of ATmin and AC,+min can be made.

To gain a better understanding of the effects caused by the difference in both

plant types, it is essential to understand the steady states’ behaviour if the species
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(a) (b)

Figure 5.4: Existence and positivity of the coexistence steady state. Visualisation of
the parameter regions in which the coexistence steady state (uC,+1 , uC2 , w

C,+) exists
and is biologically relevant (positive) in the χ-A parameter plane for different levels
of shading. In (a) s = 10−3, while in (b) s = 3 · 10−4. The other parameter values
used in this visualisation are B1 = 0.45, b2 = 0.0055, f = 0.01 and h = 0.01.
The legend of (a) also applies to (b). The markers (α) and (β) in (a) refer to the
parameter values used in the simulations presented in Figure 5.1.

are identical. At χ = 0, the coexistence steady state is

(
uC,±1 , uC2 , w

C,±
)

=


(
A±

√
A2 − 4B2

1

)
2B1

− b2 −B1f

s
,
b2 −B1f

s
,

2B2
1

A±
√
A2 − 4B2

1

 . (5.16)

As remarked in Section 5.3, for χ = 0, the densities u1 + u2 and w satisfy the

extended Klausmeier model. Thus, the sum u1 + u2 gives rise to a continuum of

steady states that satisfy

u1 + u2 =
A±

√
A2 − 4B2

1

2B2
1

, and w =
2B2

1

A±
√
A2 − 4B2

1

.

The coexistence steady state (uC,±1 , uC2 , w
C,±) maps to one member of this continuum

whose choice depends on the model parameters as given by (5.16).
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5.6.1 Stability to spatially uniform perturbations

Similar to the analysis in Section 5.5, linear stability analysis can be used to in-

vestigate the existence of patterns arising from the spatially uniform coexistence

steady state (uC,±1 , uC2 , w
C,±). The algebraic complexity of the Jacobian with entries

(5.7) evaluated at both coexistence equilibria does not allow an analytic derivation

of stability conditions similar to those for the single-species states in Section 5.5.

Instead, we performed a systematic numerical investigation of the Jacobian’s ei-

genvalues λC,±u ∈ C that determine the steady states’ stability to spatially uniform

perturbations in the respective positivity regions. This suggests that both steady

states are unstable. The instability of (uC,+1 , uC2 , w
C,+), however, is caused by an

eigenvalue of small size, denoted by λC,+u,1 , i.e. 0 < maxλu{<(λC,+u )} = <(λC,+u,1 )� 1,

where the maximum is taken over all eigenvalues λC,+u of the Jacobian JC,+ = (j)C,+k` ,

k, ` = 1, 2, 3 evaluated at the steady state (see Figure 5.5a). The metastability asso-

ciated with the small size of <(λC,+u,1 ) is, as in the case discussed in Section 5.5, due

to the species’ similar average fitness, i.e. the small difference of B2−B1F . Indeed,

an application of determinant-preserving elementary row operations shows

det
(
JC,+

)
= det

 jC,+11 jC,+12 jC,+13

0 B2 −B1F 0

jC,+31 jC,+32 jC,+33


= (B2 −B1F )

(
jC,+11 jC,+33 − j

C,+
13 jC,+31

)
= O (B2 −B1F ) .

The equilibrium is only of biological relevance if B2 > B1F . Thus, as discussed

in Section 5.5.2, if |B2 − B1F |� 1, then |det J |� 1. Since the determinant of a

matrix is the product of its eigenvalues, this shows the small size of one of the

Jacobian’s eigenvalues. If B2 − B1F = 0 but S 6= 0, then the coexistence steady

state (uC,±1 , uC2 , w
C,±) reduces to the grass-only equilibrium (uG,±1 , 0, wG,±) and the

small eigenvalue λC,+u,1 of the coexistence state corresponds to λG,±u,1 which vanishes

because B2 −B1F = 0.

Metastable States

For a system initially close to the coexistence steady state (uC,+1 , uC2 , w
C,+) the small

size of the only positive real part of the Jacobian’s eigenvalues leads to a slow

transition away from the equilibrium in the spatially uniform setting. If spatially

nonuniform perturbations of the steady state are considered, this transition oc-

curs via metastable coexistence patterns of both species, subject to sufficiently low

rainfall levels. This is quantified by linear stability analysis which shows that the
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(a) Spatially uniform perturbations. (b) Spatially heterogeneous perturbations.

(c) Order of magnitude difference.

Figure 5.5: Largest real part of eigenvalues determining stability of the coexistence
steady state. Visualisation of maxk>0{<(λC,+·,1 )} in the χ-A parameter plane for the

coexistence equilibrium (uC,+1 , uC2 , w
C,+), where λC,+·,1 denotes the eigenvalue with

largest real part of the Jacobian with entries (5.7) evaluated at the steady state
that determine its stability to spatially uniform ((a)) and spatially heterogeneous
((b)) perturbations. The order of magnitude difference between the the results for
spatially uniform and spatially heterogeneous perturbations is shown in (c). White
areas indicate regions in which the steady state is negative or does not exist. The
plots are obtained by evaluating maxk>0{<(λC,+·,1 )} for 0 < A < 8 and 0 < χ < 1 with
increments ∆A = 0.01 and ∆χ = 0.001. The parameters are s = 10−3, B1 = 0.45,
b2 = 0.0055, f = 0.01, h = 0.01, D0 = 0.01, d = 500. The marker (α) refers to the
parameter values used in the simulations presented in Figure 5.1a.
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maximum real part of the corresponding Jacobian’s eigenvalues exceeds <(λC,+u,1 ) by

several orders of magnitude (see Figures 5.5b and 5.5c for a visualisation). In other

words, maxk≥0{<(λC,+s,1 (k2))} � <(λC,+u,1 ), where λC,+s,1 (k2) denotes the eigenvalue of

JC,+− diag(k2, Dk2, dk2) with the largest real part. This leads to a quick establish-

ment of a coexistence pattern about the steady state from a spatially non-uniform

perturbation which then persists for a long time before transiting to a stable one-

species state. The growth rate that causes the formation of spatial patterns is given

by

<
(
λC,+s,1

(
k2
))

= α
(
k2
)

+ <


(
β (k2) +

√
γ (k2)

) 2
3

+ δ (k2)(
β (k2) +

√
γ (k2)

) 1
3

 , (5.17)

where α, β, γ and δ are polynomials in k2. Due to the algebraic complexity of

the eigenvalue, an analytic determination of the pattern-defining features is imprac-

tical. Instead, we studied it numerically to determine the existence and possible

wavelengths of a metastable pattern.

As rainfall A increases from the minimum AC,+min , maxk≥0{<(λC,+s,1 (k2))} decreases

and there exists a critical value of precipitation AC,+max beyond which

max
k≥0
{<(λC,+s,1 (A; k2))} = <(λC,+u,1 (A)),

as visualised in Figure 5.6a. In particular, there is a discontinuity in

kC,+max := arg max
k≥0
{<(λC,+s,1 (k2))},

at A = AC,+max, because the maximum real part of the eigenvalues attains its maximum

at k = 0 for A > AC,+max, but kC,+max 9 0 as A ↑ AC,+max. This threshold is an upper

bound for the existence of metastable coexistence patterns and is visualised in Figure

5.5c. For rainfall levels above this threshold, metastable coexistence of both plant

species still occurs, albeit not as a pattern. Spatial heterogeneity does not cause the

formation of patterns in this case as <(λC,+s,1 (A)) attains its maximum at k = 0. The

small size of <(λC,+u,1 ) still causes a solution slightly perturbed from the coexistence

steady state to remain close to the equilibrium for a long time. This gives rise to a

metastable state in which both vegetation types are present uniformly in space.

Wavelength

Linear stability analysis further provides an insight into the wavelength of patterns.

Typically the wavelength of a pattern is dominated by the wavenumber yielding the
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Figure 5.6: Dispersion relation for patterns with species coexistence. The dispersion
relation is visualised for different rainfall levels A and fixed χ = 0.2 ((a)) and
χ = 0.86 ((b)). The inset in (a) shows the behaviour close to the origin. The
dotted line in (b) indicates the equality of the local maxima for A = Ak1 . The other
parameters are s = 10−3, B1 = 0.45, b2 = 0.0055, f = 0.01, h = 0.01, D0 = 0.01,
d = 500.

largest growth. However, since the wavelength of a pattern is an inherently nonlinear

property, different modes may be selected due to effects such as hysteresis. In this

case the roots of <(λC,+s,1 (k2)) provide an upper and lower bound for the wavelength.

The numerical investigation of the dispersion relation shows that pattern wavelength

increases with decreasing rainfall, in line with results shown in Section 5.5 and

previous results on the single-species Klausmeier model on sloped ground [185, 191].

In other words, the distance between vegetation patches is larger in regions in which

a smaller amount of the limiting water resource is available. An increase in the

difference between the two plant species also causes an increase in the wavelength

difference, but this increase is small compared to changes caused by precipitation

fluctuations. A visualisation of the wavelength is given in Figure 5.7. A further

complication in the calculation of the wavelength through linear stability analysis

arises through the algebraic complexity of the dispersion relation (5.17) which causes

a discontinuity in the most unstable mode and hence also the largest root in a

subset of the parameter space considered in this analysis. The discontinuities arise

from the existence of two local maxima of <(λC,+s,1 (k2)), one of which occurs for

k1 < k < k2, which is the positivity region of γ(k2), while the other local maximum

is attained for k > k2. Consequently, there exists a critical value of the precipitation

parameter Ak1 at which there is a discontinuity in arg maxk≥0<(λC,+s,1 (k2)) because

both local maxima coincide (see Figure 5.6b). Similarly, the rainfall value Ak2

at which maxk≥k2 <(λC,+s,1 (k2)) = 0, causes a discontinuity in the largest root of the
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dispersion relation and thus in the lower bound for the wavelength of the coexistence

pattern.

5.7 Discussion

Our work predicts that coexistence of two plant species competing for the same

limiting resource can occur as a long transient state, even if coexistence is inherently

unstable. Such a metastable behaviour is characterised by the small size of the only

positive eigenvalue of the equilibrium from which the coexistence arises. Coexistence

of two species in such a metastable state is enabled by a balance of both species’

average fitness which is measured by the ratio of a species’ capability to convert water

into new biomass to its mortality rate. In the nondimensional model parameters this

balance corresponds to the small size of B2 − B1F , the quantity that controls the

size of the eigenvalue causing the instability.

In ecology, the understanding of transient states is of utmost importance as

many ecosystems never reach an equilibrium state. Disturbances such as changes

to grazing patterns or climate change interrupt the convergence to a steady state

on a frequent basis, and thus keep systems in perpetual transients [200, 203]. The

occurrence of such disequilibrium states is not specific to savanna and dryland biomes

but also occurs in ecosystems of other climate zones [180]. While we have not

investigated the system’s response to changes in environmental conditions, such as

variability in precipitation or a changes in water evaporation due to temperature

fluctuations, the analysis presented in this study can provide an insight into the

dynamics of such transient states by investigating their origin, fate and some of

their properties.

We have established two possible origins of metastable states in the multispecies

model (5.4): a spatially uniform equilibrium in which both species coexist (Section

5.6) and a one-species tree pattern that is unstable to the introduction of the herb-

aceous species (Section 5.5). For the latter, the consideration of the interspecific

shading feedback is not necessary. The direct interspecific competition does, how-

ever, cause a further decrease in the unstable eigenvalue (5.14), by further reducing

the average fitness difference between both species. Large shading effects may also

tip that balance in favour of the tree species, stabilising the tree pattern and thus

preventing the formation of a metastable coexistence pattern from an invasion-type

scenario (see Figure 5.2).

On the other hand, the inclusion of the shading effect is essential for the existence

of metastable states arising from a coexistence equilibrium as a direct interspecific

competition term is necessary for the existence of such a steady state. Coexistence

at equilibrium without the presence of a shading effect is only possible if the average
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(a) Minimum wavelength. (b) Maximum wavelength.

(c) Wavelength arising from most unstable
wavenumber.

Figure 5.7: Wavelength of metastable coexistence patterns. This figure visualises
contours of the wavelength associated with the wavenumber yielding the largest
growth (c) as well as lower (a) and upper bounds (b) that arise from linear stability
analysis. For details on the creation of the plots and the parameter values see Figure
5.5. For a comparison to the wavelengths of the single-species pattern see Figure
5.3.
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fitness of both species are equal, i.e. B2 = B1F , a highly unlikely scenario unless

both species are the same. Similar to a previous analysis of a multi-species model in

dryland ecosystems by Nathan et al. [145] we did not consider this special case as

it lacks biological relevance. Nevertheless, the lack of a shading feedback does not

necessarily prevent the establishment of a coexistence pattern from perturbations to

a spatially uniform configuration of both species similar to that visualised in Figure

5.1a. If the species differ in their dispersal behaviour, the faster dispersing species

can establish a spatial pattern (provided precipitation is sufficiently low) and can

act as an ecosystem engineer by redistributing the water resource to which the slow

disperser can adapt and form a pattern itself. As discussed in slightly different

settings by Nathan et al. [145] and Baudena and Rietkerk [16], this supports the

existence of coexistence patterns. In particular, this pushes the system into a state

to which the theory presented in Section 5.5 can be applied. Hence, if one of the two

corresponding single-species states is unstable to the introduction of the competitor

via a very small eigenvalue, the system remains in the coexistence pattern state for

a long time. This observation emphasises the difficulty of inferring the origin of a

metastable multi-species patterned state, which is beyond the scope of this study.

The wavelength of the pattern may provide a useful tool in predicting the fate

of a coexistence pattern, but potential shortfalls (linearisation, neglection of hyster-

esis effects) in the determination of the wavelength need to be taken into account.

Our analysis of the patterns’ wavelengths shows that the wavelength of a single-

species tree pattern (Figure 5.3) is very similar to that of a pattern in which the

tree species coexists with the grass species (Figure 5.7). However, if both species

differ significantly (the parameter χ being close to unity), linear stability analysis

predicts single-species grass patterns at a smaller wavelength than coexistence pat-

terns. Thus, if a pattern in which both species coexist occurs at an atypical mode

that differs from the results presented in Sections 5.5.2 and 5.6.1 and better fits the

wavelength prediction of a one-species pattern (such as in the later stages of the

solution visualised in Figure 5.1b), it can be concluded that the metastable pat-

tern eventually reduces to a one-species pattern to which the observed wavelength

corresponds.

We have restricted our analysis in this chapter to the two-species model (5.4) to

focus on the analytical investigation of pattern existence. Numerical simulations of

a three-species model similar to (5.2) with n = 3, but with the addition of multiple,

hierarchical interspecific interaction terms, also yield metastable patterned solutions

in which all three species coexist, provided their average fitness differences are small.

Coexistence through metastability can further occur for just a subset of all species

in the model. Indeed, our numerical experiments show that if one of the species has

a lower average fitness, then the community of superior species outcompetes the in-
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ferior species on a short timescale and forms a metastable coexistence state in which

it remains on a long timescale. We thus hypothesise that the metastability property

discussed in this chapter is not specific to the two-species model (5.4) but can be

extended to a larger community of plant species in desert ecosystems. Moreover,

our simulations of the three-species model indicate that the crucial condition for the

existence of metastable solutions - small average fitness differences between species

- is carried over to systems of more diverse plant communities.

The concept of a metastable solution to a system is not new. Metastability has,

for example, been studied in the Cahn-Hilliard equation [11, 12], in chemotactic

models [154] and microwave heating models [91]. The occurrence of a slow transient

between two stable states has even been briefly commented on in the analysis of

a more complex multi-species model of desert plants [76], without the attempt to

provide a detailed investigation of the phenomenon. It is worth emphasising that

we characterise metastability by the small size of the only positive eigenvalue of

an equilibrium. In landscape ecology, however, the term metastability usually has

a broader meaning as it describes a stable system whose single components are

changing over time due to disturbance and recovery effects [248].

The model in this chapter is based on the Klausmeier model [99], which de-

liberately reduces the description of the dynamics responsible for the formation of

vegetation patterns in arid environments to the infiltration feedback arising from a

soil modification caused by plants. A range of more complex models exist (see [247]

for a review of the most commonly used models) that capture a number of additional

features of dryland ecosystems, such as nonlocal plant dispersal [3, 16, 61, 156, 157],

different dynamics of soil and surface water [86, 163], nonlocal water uptake due

to extended root networks [74], more realistic grazing/browsing effects [195, 197] or

autotoxicity [120]. Simulation-based approaches have to some extent addressed the

influence of these feedbacks on the coexistence of species [76, 103], but an analytical

approach similar to that presented in this study may provide further insight into

the way in which these additional assumptions affect coexistence mechanisms.

A natural extension of the work presented in this chapter would be an investig-

ation of the metastability property in a two-dimensional space domain. The linear

stability analysis from Sections 5.5 and 5.6 can be carried over to a higher space

dimension, but does not provide any new information on the metastable behaviour

of a patterned solution. Instead, numerical simulations could provide more insights

into the coexistence pattern’s properties away from the Turing bifurcation locus,

such as a classification of its type (gap pattern, labyrinth pattern, stripe pattern or

spot pattern) along the precipitation gradient [129]. The combination of adding an

additional space dimension with the long runtimes required to capture the meta-

stable behaviour of the system would, however, incur a significant computational
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cost.

A final area of potential future work concerns variabilities in environmental con-

ditions, which have not been addressed in this study. Effects such as rainfall sea-

sonality [13, 80, 100], rainfall intermittency [13, 100, 198, 221], periodic variation

in precipitation [217] or topographic heterogeneity [72] are known to be signific-

ant for vegetation patterns and have been studied using single-species models. It

could therefore be of interest to extend those approaches to multi-species ecosystems

to develop an understanding of how such heterogeneities affect the coexistence of

species and in particular the metastability property of the model presented in this

chapter. Indeed, simulations of our multispecies model under seasonal precipitation

regimes suggest that rainfall seasons of intermediate length (150 - 250 days per year)

prolong the time the system remains in a coexistence state. Initial simulations, how-

ever, also suggest that inherently nonlinear properties such as pattern wavelength

have a significant effect on the system’s transient behaviour under temporal vari-

ations of environmental conditions. A detailed investigation of this phenomenon is

therefore beyond the scope of this study, but would present new valuable insights

into coexistence of plant species in dryland ecosystems.
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Chapter 6

Spatial self-organisation enables species coexistence in a

model for savanna ecosystems

The contents of this chapter are published in [64].

6.1 Author contribution

The authors of the published paper [64] are Lukas Eigentler and Jonathan A Sher-

ratt. Lukas Eigentler conceptualised the research, formulated the mathematical

model, performed both the analytical and numerical analyses of the model, wrote

the paper draft and reviewed and edited the manuscript. Jonathan A Sherratt

conceptualised the research, reviewed and edited the manuscript and provided su-

pervision.

Abstract

The savanna biome is characterised by a continuous vegetation cover, com-

prised of herbaceous and woody plants. The coexistence of species in arid sa-

vannas, where water availability is the main limiting resource for plant growth,

provides an apparent contradiction to the classical principle of competitive ex-

clusion. Previous theoretical work using nonspatial models has focussed on

the development of an understanding of coexistence mechanisms through the

consideration of resource niche separation and ecosystem disturbances. In

this chapter, we propose that a spatial self-organisation principle, caused by

a positive feedback between local vegetation growth and water redistribution,

is sufficient for species coexistence in savanna ecosystems. We propose a spa-

tiotemporal ecohydrological model of partial differential equations, based on

the Klausmeier reaction-advection-diffusion model for vegetation patterns, to

investigate the effects of spatial interactions on species coexistence on sloped

terrain. Our results suggest that species coexistence is a possible model out-

come, if a balance is kept between the species’ average fitness (a measure of

a species’ competitive abilities in a spatially uniform setting) and their col-

onisation abilities. Spatial heterogeneities in resource availability are utilised

by the superior coloniser (grasses), before it is outcompeted by the species of
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higher average fitness (trees). A stability analysis of the spatially nonuniform

coexistence solutions further suggests that grasses act as ecosystem engineers

and facilitate the formation of a continuous tree cover for precipitation levels

unable to support a uniform tree density in the absence of a grass species.

6.2 Introduction

Savannas are characterised by the coexistence of herbaceous vegetation (grasses)

and woody plant types (shrubs and trees) [176]. They are a dominating feature

of many geographical regions worldwide, occupying over one eighth of the global

land surface [176, 177]. Savannas stretch across a wide range of different climate

zones, and in particular different aridity zones. If the total precipitation volume in

savannas is low, they are referred to as water-limited or (semi-)arid savannas [173].

The coexistence of grass and trees in arid savannas, in which water is the main

limiting resource for vegetation growth, has been of particular interest for many dec-

ades (see [244] for a review of mathematical models on the subject), as it provides an

apparent contradiction to the classical competitive exclusion principle, which states

that under competition for the same limiting resource only one species can survive

(e.g. [88]). In broad terms, two different mechanisms that facilitate the coexist-

ence of species in savannas have been established using mathematical modelling:

resource niche differentiation and environmental disturbances. The former is based

on Walter’s hypothesis [234], which assumes niche differentiation into different root

zones. According to this hypothesis, trees have exclusive access to water in deeper

soil layers, while grasses are more efficient in their water uptake in the topsoil layer.

Early modelling approaches used Walter’s hypothesis to provide an explanation for

the coexistence of grasses and trees in savannas [226, 232, 233].

However, empirical studies later suggested that Walter’s hypothesis does not

always hold in savannas so that it cannot be regarded as a universal mechanism

responsible for species coexistence in water-limited ecosystems [19, 139, 178]. Mod-

elling efforts consequently shifted towards other mechanisms, such as disturbances

due to fires (e.g. [18, 201]), disturbances due to grazing and browsing (e.g. [175,

204]), asymmetric competitive effects that trees impose on grass (e.g. [213]), different

competitive abilities of trees in different life stages [15, 43], or a combination thereof.

The main characteristics in which existing models of the savanna biome differ are

their representation of the state variables, water dynamics and disturbance occur-

rences. Many models (e.g. [215]) represent the plant state variables as area fraction

covers, following the early model by Tilman [213]. However, to account for the fact

that plant types are typically not mutually exclusive, other modelling frameworks

(e.g. [17]) characterise plant variables by the plants’ biomass per unit area. The
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model by Tilman and many of its extensions incorporate the plant species’ competi-

tion for water implicitly, but extensions (e.g. [1]) consider water dynamics explicitly

in an ecohydrological framework. The occurrence of fire or grazing/browsing dis-

turbances is described either in a probabilistic (e.g. [42]) or a deterministic sense.

Models assuming the latter either provide a time-continuous (e.g. [245]), a time-

discrete ([85]) or a time-impulsive ([206, 207, 242, 243]) description of the ecosystem

dynamics.

Existing models describing savannas mostly use systems of ordinary differential

equations or impulsive differential equations, with the spatiotemporal model for tree

cover in mesic savannas by Martinez-Garcia et al. [123] being a notable exception.

Such models are nonspatial and do not take into account any spatial effects that af-

fect the plant populations. However, spatial self-organisation of plants into patterns

of alternating patches of high biomass and bare soil are known to be an essential

element in the survival of plants in drylands [47, 222]. The formation of patterns is

usually induced by a positive feedback between local vegetation growth and water

redistribution, caused, for example, by the formation of infiltration-inhibiting soil

crusts that induce overland water flow towards existing biomass patches [130, 166].

A very common type of patterned vegetation is stripes that occur on sloped ground

(up to 2% gradient) parallel to the terrain contours [222]. Similar to savanna eco-

systems, coexistence of trees and grasses (on the level of single vegetation patches)

also occurs in patterned vegetation [41, 179]. In striped vegetation, grass species are

usually observed to dominate the uphill region of a stripe, while woody vegetation

is more dominant towards the centre and downslope end of a stripe [41, 179].

Spatially explicit mathematical modelling using partial differential equations

(PDEs) has explored different mechanisms that enable species coexistence in pat-

terned ecosystems of dryland vegetation. For example, if a pattern-forming species

and a non-pattern forming (in the absence of any competitors) species are con-

sidered, the pattern-forming species can act as an ecosystem engineer by altering

the environmental conditions (in particular the availability of water) and thus fa-

cilitate coexistence with a non-pattern-forming species superior in its water uptake

and dispersal capabilities [16, 145]. A different mechanism that provides a possible

explanation for the stability of coexistence patterns is the plant species’ adaptation

to different soil moisture levels, using the stabilising effect of resource niche dif-

ferentiation, similar to the early savanna models based on Walter’s hypothesis [27,

221]. Coexistence of species in patterned form may not necessarily be observed as a

stable solution of the system, but can also as a long transient, often referred to as a

metastable state [63, 76] (Chapter 5). Such metastable patterns occur if the facilit-

ative effects that cause the formation of patterns occur on a much shorter timescale

than the competitive effects that yield the eventual extinction of the inferior spe-
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cies. In-phase spatial patterns are not the only context in which coexistence of plant

species in patterned form is studied in mathematical models of dryland ecosystems.

Alternatively, coexistence of species can occur through the existence of a multitude

of localised patterns of one species in an otherwise uniform solution of a competitor

(homoclinic snaking) [103] in a model that assumes a trade-off between root and

shoot growth and the associated competition for water and light.

Most models describing species coexistence in dryland ecosystems are extensions

of either the Gilad et al. model [74, 75] or the Klausmeier model [99], which are both

phenomenological single-species models that capture the formation of vegetation

patterns in water-limited ecosystems. The latter in particular stands out due to

its deliberately basic description of the plant-water dynamics and thus provides an

excellent framework for mathematical analysis and model extensions (e.g. [10, 20,

34, 35, 61, 63, 120, 184–186, 188, 190–192, 194, 195, 197, 199, 221, 236, 237]). Other

modelling frameworks that address the dynamics of vegetation patterns exist (see

[21, 124] for reviews), but, to the best of our knowledge, have not been utilised to

address species coexistence.

In this chapter, we introduce a spatially explicit ecohydrological PDE model to

investigate the role of spatial self-organisation principles in the stable coexistence

of trees and grasses on sloped terrain in savannas (Sec. 6.3). To solely focus on

the effects of spatial heterogeneities caused by a pattern formation feedback, we

deliberately assume that both species only differ in their basic parameters, but not

in any of their functional responses. We base our model on the Klausmeier model

for vegetation patterns and find stable solutions of the multispecies model in which

both species coexist, representing a savanna biome. More precisely, these stable

solutions are periodic in space, but, unlike in the single-species Klausmeier model,

plant densities in the troughs of the pattern are not close to zero. Instead, both plant

densities oscillate between two non-zero values. In Sec. 6.4 we perform a bifurcation

analysis of the model to disentangle the origins of the coexistence state and establish

key conditions required for the existence of coexistence patterns. We augment our

results on pattern existence by an analysis of their stability in Sec. 6.5 and address

the phase difference between the oscillations in both plant densities in Sec. 6.6.

Our analysis is restricted to a one-dimensional space domain which is assumed to

represent a sloped terrain, as the inclusion of a term describing the flow of water in

the downhill direction facilitates the application of a numerical continuation method

to study pattern existence and stability. We briefly comment on model solutions on

a flat spatial domain in Sec. 6.7 and discuss the relevance and implications of our

results. Sec. 6.8 provides an outline of the numerical continuation methods used in

our bifurcation and stability analysis.
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6.3 The model

In this section, we present the modelling framework used in this chapter to study the

coexistence of plant species in water-deprived ecosystems. Our model is based on

the reaction-advection-diffusion model by Klausmeier [99], which in nondimensional

form reads

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
, (6.1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation and

drainage

− u2w︸︷︷︸
water uptake

by plants

+ ν
∂w

∂x︸︷︷︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

. (6.1b)

The density u(x, t) denotes the dry biomass per unit area, and w(x, t) quantifies the

mass of water per unit area at time t > 0 at a space point x ∈ R on a one-dimensional

infinite spatial domain, on which x increases in the uphill direction if the terrain

is considered to be sloped. It is assumed that rainfall is continuous and that both

biomass density and water density decay due to plant mortality and water drainage

and evaporation, respectively, at constant rates. The nonlinearity in the terms

describing water consumption by plants and the consequential increase in biomass

accounts for part of the positive feedback between local vegetation growth and the

redistribution of water. Water uptake is the product of the consumer density (u), the

resource density (w) and a term that accounts for the infiltration of water into soil

layers where roots are present (u). The latter’s dependence on the biomass density

stems from the plants’ infiltration-enhancing soil modifications and the formation of

soil crusts in regions of low biomass. Both densities undergo diffusion and water flow

in the downhill direction is modelled by an advection term, if the model is considered

on sloped terrain. Diffusion of water was not part of Klausmeier’s original model,

but is a well-established addition to account for water flow on flat terrain (e.g.

[95, 199, 225, 247]). The parameters A, B, ν and d are combinations of several

dimensional parameters, but represent precipitation, plant mortality rate, the speed

of water flow downhill and the ratio of the diffusion coefficients, respectively.

In a previous chapter (Chapter 5) [63], we have extended the single-species Klaus-

meier model (6.1) by separating the biomass density u into two species, u1 and u2

with differing growth and mortality rates, diffusion coefficients and water infilt-

ration enhancement strengths. In this chapter, we follow a similar approach and

analyse the two-species model, which, after a suitable nondimensionalisation (see
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[63] (Chapter 5)1), is

∂u1

∂t
=

plant growth︷ ︸︸ ︷
wu1 (u1 +Hu2)−

plant
mortality︷ ︸︸ ︷
B1u1 +

plant dispersal︷ ︸︸ ︷
∂2u1

∂x2
, (6.2a)

∂u2

∂t
=

plant growth︷ ︸︸ ︷
Fwu2 (u1 +Hu2)−

plant
mortality︷ ︸︸ ︷
B2u2 +

plant dispersal︷ ︸︸ ︷
D
∂2u2

∂x2
, (6.2b)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation and

drainage

−w (u1 + u2) (u1 +Hu2)︸ ︷︷ ︸
water uptake by plants

+ ν
∂w

∂x︸︷︷︸
water flow

downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

. (6.2c)

As in (6.1), ui(x, t), i = 1, 2 and w(x, t) denote the respective plant densities and

the water density at time t > 0 and point x ∈ R, where the space coordinate

increases in the uphill direction of the sloped terrain. The modelling assumptions

are identical to those in the single-species model, i.e. all three densities diffuse,

where the nondimensional diffusion coefficients D and d are ratios of the respective

dimensional diffusion coefficient and the diffusion coefficient of species u1; water

flows downhill; plant loss of both species occurs at constant rates Bi; evaporation

and drainage effects reduce the water density at a constant rate; and precipitation

continuously supplies the system with water at a constant rate, represented by the

nondimensional precipitation parameter A. The water uptake term is composed of

the total consumer density (u1 +u2), the resource density (w), and the enhancement

of water infiltration caused by plants (u1 +Hu2). The constant H accounts for the

unequally strong effects of different plant species on the soil’s permeability. Plant

growth of species u1 directly corresponds to the resource consumption by u1 and

thus occurs at rate w(u1 + Hu2). Similarly, the biomass of species u2 increases at

rate Fw(u1 +Hu2), where F is the ratio of the species’ water to biomass conversion

coefficients. The multispecies model (6.2) is a simple extension of the single-species

Klausmeier model (6.1). The plant species only differ in their parameters, with all

functional responses being identical. In particular, each species satisfies the single-

species model (6.1) in the absence of its competitor.

While the multispecies model (6.2) is similar to the model analysed in Chapter 5

[63], the results presented in this chapter address a solution type with applications

to a fundamentally different ecosystem. In Chapter 5 [63], we focussed on species

coexistence in vegetation patterns, which are characterised by a mosaic of colonised

ground and bare soil. In this context, we found that coexistence can occur as a meta-

1The advection parameter ν is not given in the nondimensionalisation in [63] (Chapter 5), but
ν = ν̃(k1k2)−1/2, where ν̃, k1 and k2 are dimensional parameters describing water flow speed,
diffusion of species u1 and water evaporation rate, respectively.
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stable state, that is an inherently unstable state which appears as a long transient

in the system. The novelty of the work presented in this study is twofold. Firstly,

we address the effect of spatial interactions on species coexistence in savannas, an

ecosystem in which plant cover is continuous, but not necessarily uniform. With the

notable exception of [123], spatial effects on savanna ecosystems have not been con-

sidered in mathematical models before. Secondly, we are able to show that, unlike in

the context of patterned vegetation considered in Chapter 5 [63], coexistence states

of the multispecies model (6.2) that represent a savanna biome are stable solutions.

The model introduced in Chapter 5 [63] further includes an asymmetric direct

competition term through which one species increases the mortality rate of its com-

petitor (e.g. due to shading). However, the inclusion of such a direct competition

term in either or both of the equations does not yield any qualitative differences

in the results on species coexistence presented in this study (but may, in general,

add to the richness of solution types in the system). Quantitative effects of direct

interspecific competition include changes to the notion of the local average fitness

of a species, but in the interest of providing a basic representation of the self-

organisation principle as a coexistence mechanism, we do not consider any direct

interaction between the plant species in (6.2). Instead, the two plant species only

compete indirectly through the depletion of the limiting resource.

The main focus of this chapter is a description of coexistence of grass and trees

or shrubs in water-deprived ecosystems. Thus, we henceforth consider u1 to be a

herbaceous species and u2 to be of woody type. This assumption allows for qualit-

ative statements on the parameters in the system. For example, mortality rates can

be inferred from the lifespan of a species. The difference in the typical lifespans of

grasses and trees yields that grasses die at a faster rate (B1 > B2) [1]. Similarly,

plant growth parameters can be deduced from the time necessary for a plant popu-

lation to reach its equilibrium density. Grasses require significantly shorter periods

to attain steady steady state biomass levels than trees, which suggests that grasses

are superior in their water-to-biomass conversion (F < 1) [1]. If other system para-

meters are known, the strength of a plant species’ enhancement of water infiltration

into the soil can be estimated from its equilibrium density [99]. As steady state

biomass densities for tree species are in general much higher than those of grass

species in dryland ecosystems, this yields that grasses cause a larger increase in soil

permeability per unit biomass than trees (H < 1) [125]. The plant species’ diffusion

coefficients relate the spatial spread of vegetation with time. The longer generation

time of trees suggests slower dispersal of trees (D < 1).

All our parameter estimates are based on previous modelling studies (e.g. [99,

199]), as there is a lack of empirical data that would allow for an accurate parameter

estimation. However, all our assumptions on parameter differences between tree and
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grass species are in agreement with parameter estimates in previous multispecies

models (e.g. [16, 75]). Unless otherwise stated, we set B1 = 0.45, B2 = 0.0486,

D = 0.109, F = 0.109, H = 0.109, ν = 50 and d = 500.

6.4 Existence and onset of patterns in which species coexistence occurs

In this section, we discuss the existence of solutions of (6.2) in which both species

coexist. Such solutions are periodic travelling waves, i.e. spatially periodic solutions

that move in the uphill direction of the domain at a constant speed. Numerical con-

tinuation shows that the branches of periodic travelling waves, in which both plant

species are strictly positive, terminate at a single-species pattern at either end. The

key ingredient in understanding the onset and existence of coexistence states is

information on the single-species patterns’ stability. An investigation of the essen-

tial spectrum of the single-species pattern reveals that bifurcations to coexistence

states occur as a single-species pattern loses/gains stability to the introduction of

its competitor.

6.4.1 Stability of spatially uniform equilibria

The starting point of our bifurcation analysis is the equilibrium states in a spatially

uniform setting. Depending on the level of precipitation, the multispecies model

(6.2) has up to five spatially uniform steady states: a trivial desert steady state

(0, 0, wD) = (0, 0, A) which exists and is stable in the whole parameter space; a pair

of single-species grass equilibria (uG,±1 , 0, wG,±) that exist for sufficiently high rain-

fall volumes A > AGmin; and a pair of single-species tree states (0, uT,±2 , wT,±) that

exist for A > ATmin. In both cases, the pair of single-species equilibria meet in a fold

at their respective existence thresholds, and the lower branches, here denoted by

a minus sign in the superscripts, are unstable. The remaining single-species grass

equilibrium (uG,+1 , 0, wG,+) is linearly stable to spatially uniform perturbations if

B2 − FB1 > 0 and B1 < 2, while the tree steady state (0, uT,+2 , wT,+) is linearly

stable to spatially homogeneous perturbations if B2 − FB1 < 0 and B2 < 2. [63]

(Chapter 5). Parameter estimates consistently imply that plant mortality is suffi-

ciently low to assume Bi < 2, i = 1, 2.

These two stability criteria emphasise the critical role of the quantity B2−FB1

in the system, as B2 − FB1 = 0 is a separatrix of the stability regions of the single

species equilibria in the spatially uniform setting. We thus refer to B2 − FB1 as

the average fitness difference between the two species, because its sign determines

the single-species state to which the system converges in the absence of any spatial

interactions (provided the precipitation level A is sufficiently high). In dimensional

parameters, the average fitness of a species in the model is the ratio between its
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water-to-biomass conversion capabilities (growth rate) and its mortality rate [63]

(Chapter 5).

6.4.2 Single-species patterns

If spatial interactions are included, the multispecies model (6.2) admits single-species

patterns that move in the uphill direction of the domain at a constant speed. Such

regularly patterned solutions moving through the spatial domain are classified as

periodic travelling waves, an important solution type for reaction-advection-diffusion

equations and other partial differential equations. Periodic travelling waves can be

represented by a single variable z = x− ct only, where c ∈ R is the migration speed

of the periodic solution, and u1(x, t) = U1(z), u2(x, t) = U2(z) and w(x, t) = W (z).

This coordinate transformation reduces the PDE system (6.2) to the corresponding

travelling wave ODE system

WU1 (U1 +HU2)−B1U1 + c
dU1

dz
+

d2U1

dz2
= 0, (6.3a)

FWU2 (U1 +HU2)−B2U2 +
dU2

dz
+D

d2U2

dz2
= 0, (6.3b)

A−W −W (U1 + U2) (U1 +HU2) + (c+ ν)
dW

dz
+ d

d2W

dz2
= 0. (6.3c)

Patterned solutions of the PDE system (6.2) correspond to limit cycles of (6.3).

In the PDE setting of (6.2), we would typically investigate the interval of a given

control parameter, here the precipitation parameter A, in which patterned solution

exist. Moreover, the transformation to the comoving frame introduces an additional

parameter: the migration speed c. If a patterned solution of (6.2) exist for a given

set of the PDE parameters, limit cycles of (6.3) exist for a range of values of the

migration speed c. We thus need to consider a pattern forming region in the (A, c)

parameter plane, instead of an interval of A only.

The existence of single-species patterns is examined using the numerical continu-

ation software AUTO-07p [53] and form part of the bifurcation diagrams visualised

in Fig. 6.3. In particular, since the multispecies model (6.2) reduces to the single-

species Klausmeier model (6.1) in the absence of one of the species, the bifurcation

structure of the system’s single-species states is identical to that of the single-species

Klausmeier model. More precisely, the pair of spatially uniform single-species grass

equilibria (u1
G,±, 0, wG,±) meet in a fold. In the spatial model, the branch stable

to spatially uniform perturbations loses its stability at a Turing-Hopf bifurcation.

This is the onset locus of the single-species pattern. A multitude of stable and

unstable patterned states at different wavelengths and migration speeds exist (only

140



Chapter 6: Spatial self-organisation enables species coexistence in savannas

one solution branch is shown in the bifurcation diagrams 6.3), which all originate at

a Hopf-bifurcation and terminate in a homoclinic orbit as the control parameter A

is decreased [194]. Due to the symmetry in the model, identical considerations hold

true for the single-species tree states.

6.4.3 Multispecies patterns

Even though there is no spatially uniform equilibrium in which both plant species

coexist, numerical simulations of the full system (Fig. 6.1) suggest the existence

of stable patterned solutions of (6.2) in which species coexistence occurs. Such

solutions also move in the uphill direction, but are distinctly different from the

single-species patterns that occur in both the single-species Klausmeier model (6.1)

and the multispecies model (6.2). In single-species patterned solutions, the plant

density oscillates between a high level of biomass and a biomass level close to zero

(Fig. 6.6 (a) and (b)). Ecologically, such solutions represent a transect of a striped

vegetation pattern in which patches of high biomass alternate with regions of bare

soil. By contrast, in the multispecies patterns, both plant densities oscillate between

two nonzero levels (Fig. 6.1 and Fig. 6.6 (c) and (d)). In this solution type, there

are no patches devoid of biomass, as occurs in a savanna ecosystem.

Onset of multispecies patterns

Branches of single-species periodic travelling waves originate from bifurcations of

the spatially uniform equilibria. Further bifurcations may occur along those solution

branches, and these are the origin of other solution branches in which both plant

species coexist (with non-negative densities) in a patterned state. An insight into

the onset of these coexistence patterns is gained through a stability analysis of

the single-species patterns in both the single-species Klausmeier model (6.1) and

the multispecies model (6.2). The stability of a periodic travelling wave can be

determined through a calculation of its essential spectrum.

The essential spectrum S ⊂ C of a periodic travelling wave solution determines

the leading order behaviour of small perturbations to the periodic travelling wave.

Since periodic travelling waves are translation invariant, the origin is always part of

the essential spectrum. Hence, the origin is excluded from the following definition

of stability. If the essential spectrum lies entirely in the <(λ) < 0, λ ∈ C half-

plane, then the periodic travelling wave is spectrally stable, otherwise it is spectrally

unstable. The essential spectrum can be calculated using the numerical continuation

method by Rademacher et al. [160] and we provide a brief outline of how the method

is applied to (6.3) in Sec. 6.8.

To understand the onset of coexistence patterns, the essential spectrum of a
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Figure 6.1: Numerical simulation of the multispecies model. This figure shows a
typical patterned solution of (6.2) in which both species coexist. The red, blue and
yellow vertical lines indicate the location of local minima of the grass density u1, the
tree density u2 and the total plant density u1 + u2 respectively, and highlight that
the total plant density and the water density are antiphase, as well as the existence
of a phase difference between the plant patterns. The solution is obtained through
a numerical simulations with precipitation parameter A = 4.5.
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given pattern in the single-species Klausmeier model (6.1) is compared with that

of the same single-species solution of the multispecies model (6.2) (Fig. 6.2). The

spectrum of the pattern in the multispecies model includes additional components

that describe the behaviour of perturbations in the plant type absent in the single

species pattern. The bifurcation to the coexistence patterns occurs where the single

species pattern loses stability to the introduction of the competitor species. This

does not necessarily correspond to a stability change of the single species pattern,

since it may be unstable in the single-species model either side of the bifurcation.

In more formal words, if S1 denotes the spectrum of a single-species pattern in

the single-species model (6.1) (Fig. 6.2a) and S2 denotes the spectrum of the same

solution in the multispecies model (6.2) (Fig. 6.2b), then S1 ⊂ S2 and the bifurcation

to the coexistence pattern occurs as max{<(λ) : λ ∈ S2 \ S1} = 0, i.e. as S2 \ S1

crosses the imaginary axis <(λ) = 0 (Fig. 6.2c). Due to the symmetry in the model,

these considerations hold for both species in the model.

The coexistence solution branches either connect both single-species solution

branches or connect two bifurcations along the same single-species pattern branch.

However, coexistence patterns do not originate or terminate at these bifurcations.

Instead, the plant density which is zero at the bifurcation changes its sign and the

coexistence solution branch continues beyond the bifurcation but is biologically ir-

relevant (not shown in Fig. 6.3). We henceforth use coexistence pattern to describe

those with positive densities in both species only, and with a slight abuse of termino-

logy refer to the branching points along the single species pattern solution branches

as their origins or termini. The exception to the considerations detailed above is

large migration speeds c, for which only one of the single-species pattern exists. In

this case, the branch of patterned coexistence solutions terminates in a homoclinic

orbit.

Existence of multispecies patterns

A critical requirement for the existence of coexistence patterns is a sufficiently slow

(compared to its competitor) growth rate of the species with superior average fitness.

If B2−FB1 < 0 (u2 has higher average fitness) then coexistence patterns of a fixed

migration speed c only occur if F is below a critical threshold Fexist. A second

significant change of the bifurcation structure occurs at F = Fsplit < Fexist, at

which the precipitation interval in which coexistence patterns occur is split into two

disjoint intervals. Assuming that the average fitness difference B2 − FB1 and the

migration speed c are kept constant, changes to the system’s bifurcation structure

under increases in F (and associated decreases in B2) can be characterised as follows

(Fig. 6.3):
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Figure 6.2: Spectra of single-species patterns. The visualisations in (a) and (b) com-
pare the spectrum of a patterned solution in the single-species Klausmeier model to
that of the identical periodic travelling wave in the multispecies model. The pat-
tern’s spectrum in the single-species model is a subset of its the pattern’s spectrum
in the multispecies model, as the latter contains additional components correspond-
ing to perturbations in the plant density absent in the single species pattern. In (c),
the spectra of a single-species pattern in the multispecies model is shown around the
origin for different values of the precipitation parameter A (either side of and at the
bifurcation to the multispecies pattern) to visualise that the bifurcation to coexist-
ence patterns occurs as the single-species loses/gains stability to the introduction of
a second species.
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F � Fsplit: For sufficiently small F , there is only one branch of periodic travelling

waves in which both species coexist, which connects branching points on either

branch of the single species patterns (Fig. 6.3 (a)).

F ≈ Fsplit and F < Fsplit: As the growth rate ratio F is gradually increased, a

second pair of branching points moves along each of the single species pattern

branches from the homoclinic solution towards the Turing-Hopf bifurcation

and a second branch of coexistence patterns connects both branching points

(Fig. 6.3 (b)).

Fsplit < F < Fexist: A further increase of F causes a significant change in the bifurc-

ation structure. At the critical threshold F = Fsplit both coexistence solution

branches coincide for some precipitation level. For F > Fsplit the origins and

termini of the solution branches are exchanged and each solution branch con-

nects both branching points on the same single species pattern branch (Fig.

6.3 (c)). This breaks up the existence interval of the coexistence solutions into

the union of two disjoint intervals.

F ≈ Fexist and F < Fexist: Further increases of F increase the gap between the ex-

istence intervals and consequently reduce the size of the existence region (Fig.

6.3 (d)). Increases in F also reduce the distance between both branching

points along the single species branch, until they meet in a fold at a threshold

F = F
(i)
exist, i = 1, 2, where F

(1)
exist and F

(2)
exist may differ and depend on other

parameters in the model, in particular the diffusion rate ratio D.

F > Fexist: For F > F
(i)
exist, no branching points along the respective single species

pattern branch exist. For the species of inferior average fitness (u1) this is

due to the instability of the single-species pattern to the introduction of the

second species u2 caused by the combination of the competitor’s higher average

fitness and sufficiently fast growth rate. In terms of the essential spectrum,

this is characterised by the subset S2 \ S1 of the essential spectrum of the

single-species pattern, which always extends into the <(λ) > 0 half-plane, i.e.

max{<(λ) : λ ∈ S2 \ S1} > 0 along the whole solution branch if F > F
(1)
exist.

Vice versa, max{<(λ) : λ ∈ S2\S1} < 0 for the species of higher average fitness

(u2) along the branch of single species pattern, if F > F
(2)
exist, corresponding to

the pattern’s stability to the introduction of u1. Thus, patterned solutions in

which both species coexist cease to occur at F = Fexist := max{F (i)
exist}. The

level of Fexist depends on the dispersal behaviour of both plant species and

increases monotonically with |log(D)|. In particular, if D = 1, i.e. the species’

diffusion coefficients are equal, Fexist = F
(1)
exist = F

(2)
exist = 1 and coexistence

patterns cease to occur if both species growth rates are equal.
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(a)

(b)

(c)

(d)

Figure 6.3: Bifurcation diagrams under varying growth rate ratio F and constant
average fitness. The full figure caption and legend are displayed overleaf.
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Figure 6.3 (cont.): Overleaf, bifurcation diagrams for a
number of different values of F and B2, keeping the aver-
age fitness difference B2 − FB1 < 0 constant, are shown.
For sufficiently small F , i.e. a sufficiently slow growth
rate of the species of higher average fitness, only one
branch of coexistence patterns occurs (a). Increases in
F cause the appearance of a second branch (b), before
the the precipitation interval in which patterns exist is
split into two (c). Further increases of F reduce the size
of the parameter region in which coexistence patterns oc-
cur (d), before the coexistence state ceases to exist as F
passes through a critical threshold (not shown). Solution
branches of patterned states are only shown for fixed mi-
gration speed c = 0.15 and no stability information is
shown. The chosen values of the growth rate ratio F are
F = 0.109 (in (a)), F = 0.73 (in (b)), F = 0.7543 (in
(c)) and F = 0.9 (in (d)). Note the difference to the bi-
furcation diagrams presented in Fig. 6.4, in which only
B2 is varied and the average fitness difference undergoes
changes.

The crucial role of the balance between the average fitness difference B2 − FB1

and the growth rate ratio F is further emphasised by an analysis of the bifurcation

structure under changes to the average fitness difference if the growth rate ratio F is

fixed. If B2−FB1 < 0 and F is sufficiently small, i.e. u2 has superior average fitness

but a slower growth rate than u1, then coexistence pattern occur, as outlined above

(Fig. 6.5 (a)). If the average fitness is gradually increased, the branching points,

at which the coexistence patterns originate, move along the single species branch

towards the Turing-Hopf bifurcation and cease to exist at B2 − FB1 = 0 (Fig. 6.5

(b)). Hence, no coexistence patterns occur if the faster growing species has superior

average fitness (Fig. 6.5 (c)). In terms of the essential spectrum of the single-species

pattern, this is because S2 \S1 does not extend into the <(λ) > 0 half-plane for any

precipitation levels. This corresponds to the pattern’s stability to the introduction

of a competitor with slower growth rate and inferior average fitness.

Moreover, the amplitudes of all densities in the coexistence pattern tend to zero

as B2 − FB1 → 0. In other words, the coexistence pattern approaches a spatially

uniform state as the average fitness difference tends to zero. If a coexistence pattern

is a stable solution of (6.2) for B2 − FB1 < 0 (but see Sec. 6.5 for more details on

stability), then it automatically loses its stability at B2−FB1 = 0 as no coexistence

equilibrium state is admitted for B2 − FB1 > 0. The further evolution of such a

solution as B2 − FB1 > 0 was addressed in Chapter 5 [63] for a slightly different

model. Those differences (flat ground instead of sloped terrain and an additional
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Figure 6.4: Behaviour of a solution as the average fitness difference changes its
sign. This illustration shows the decrease in solution amplitudes of a patterned
solution of (6.2) in which both species coexist, as the average fitness difference
B2 − FB1 gradually tends to zero from below. At B2 − FB1 = 0 the solution
loses its stability, but no rapid regime shift to a stable single-species state occurs.
Instead, both species continue to coexist in a spatially uniform metastable state.
The precipitation parameter used in the simulation is A = 4.5. The average fitness
difference is changed by variations in B2 only.

term accounting for an asymmetric interspecific competition), however, do not qual-

itatively affect the relevant results presented here. If the average fitness difference

B2 − FB1 > 0 remains sufficiently small, then coexistence of both plant species

occurs as a metastable state. A metastable solution is a long transient state which

eventually converges to a stable single-species state. Hence, a coexistence solution

of (6.2) remains in a coexistence state for a significant amount of time after it ceases

to exist at B2 − FB1 = 0, provided that B2 − FB1 � 1 (see Fig. 6.4).

6.5 Stability of coexistence pattern

The analysis presented in the previous section provides an insight into the existence

of patterned coexistence solutions of (6.2). Ecologically, however, it is key to gain an

understanding of the stability of such solutions. In Sec. 6.4, we investigated pattern

onset and existence for fixed migration speed c. In this section, however, we present

stability (and existence) results in the whole (A, c) plane to gain a comprehensive

understanding of a pattern’s behaviour under changes of the precipitation parameter

A.
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Figure 6.5: Bifurcation diagrams under changing average
fitness difference. Bifurcation diagrams for different val-
ues of the average fitness difference B2−FB1 are shown.
As the average fitness difference increases, the origin of
coexistence patterns moves along the single species pat-
tern branches towards the Hopf bifurcation at which the
single-species pattern originate. No coexistence pattern
occur for B2 − FB1 > 0. The average fitness difference
is varied by changes in B2. Plant mortality of the tree
species is B2 = 0.0486 (in (a)), B2 = 0.04904 (in (b))
and B2 = 0.04906 (in (c)). Note the difference to the
bifurcation diagrams shown in Fig. 6.3, in which both F
and B2 are varied to keep the average fitness difference
constant.
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The (in)stability of a pattern with given precipitation level A and migration

speed c can be determined through a calculation of its essential spectrum. To avoid

the computationally expensive calculation of a large number of essential spectra on

a fine grid in the (A, c) parameter plane, an extension of the numerical continuation

method by Rademacher et al. [160, 189] can be used to trace stability boundaries

in parameter space (see Sec. 6.8 and [160, 189] for more details). Stability changes

of periodic travelling waves under variations of either the PDE parameters or the

migration speed c can be classified into two types [159]. A stability change of

Eckhaus (sideband) type is characterised by a sign change of the curvature of the

spectrum at the origin, which is always part of the spectrum due to translation

invariance of periodic travelling waves. If instead a pair of folds in the essential

spectrum crosses the imaginary axis with nonzero real imaginary part, then the

stability change is said to be of Hopf type. Tracing both Eckhaus and Hopf stability

boundaries allows us to create a map of stability in the (A, c) plane, often referred to

as the Busse balloon [26]. Such a Busse balloon for the coexistence patterns in (6.2)

is shown in Fig. 6.7, where it is embedded into the solution type’s existence region.

The boundaries for pattern existence in the (A, c) are also obtained by numerical

continuations of pattern onset loci and folds along the solution branches. Note that

due to the existence of folds in the solution branches of coexistence patterns, an

(A, c) pair does not necessarily uniquely define a member of the coexistence pattern

solution family. However, our stability analysis indicates that if more than one

periodic travelling wave solution of (6.2) exists for a given (A, c) pair, then only a

maximum of one of the solutions is stable. For simplicity, we make no distinction

between (A, c) pairs that uniquely define a stable pattern and parameter values

for which additional unstable patterns exist in our definition of the Busse balloon.

Hence, a pair (A, c) is a member of the stability region in the visualisations (Fig.

6.7 and 6.8), even if additional unstable patterns exist.

A crucial ecological aspect of patterned solutions of (6.2) is their behaviour as

they become unstable due to changes in precipitation. To gain some information

on the evolution of a solution under changing rainfall, it is instructive to super-

impose wavelength contours on the stability diagram (Fig. 6.7). Given a stable

pattern with given wavelength L, the solution follows the wavelength contour if the

precipitation parameter is varied, until it reaches a stability boundary. Unlike in

previous work on pattern stability in ecological systems [20, 44], we do not observe

any qualitative differences between the effects of an instability caused by crossing

an Eckhaus boundary and a destabilisation that occurs after a stability boundary

of Hopf type is crossed. As the stability boundary is crossed, a new wavelength

is selected. Significantly, wavelength selection for the coexistence patterns differs

from that of both single species patterns. In the case of a single-species solution,
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a decrease of precipitation across a stability boundary causes a switch to a higher

wavelength pattern, increasing the size of the gaps of bare ground between the ve-

getation stripes (Fig. 6.6(a) and (c)). Conversely, a destabilisation of a coexistence

pattern due to decreasing precipitation causes the selection of a shorter wavelength

pattern (Fig. 6.6(b) and (d)). To understand this difference, it is worth recalling

a key difference between the two solution types. The troughs of single species pat-

terns in (6.2) attain values close to ui = 0 and represent alternating areas of high

biomass and bare ground regions, while the coexistence patterned solutions oscillate

between two nonzero biomass levels, corresponding to a savanna-like state. The

selection of a smaller wavelength in the coexistence pattern for decreasing precipit-

ation is associated with a simultaneous decrease of the relative pattern amplitude

(maxui − minui)/‖ui‖, i = 1, 2 in both species. A reduction in the relative amp-

litude allows for a compensation of the higher density of vegetation peaks associated

with a shorter wavelength to achieve the overall reduction in biomass caused by a

decrease in the rainfall parameter A.

A second key difference between coexistence and single-species patterns in the

system is the patterns’ migration speed close to stability boundaries for decreasing

precipitation A. Single-species patterns experience a decrease in their migration

speed c before a destabilisation due to decreasing rainfall occurs. This behaviour is

an example of a warning sign of an imminent deterioration of the ecosystem that

may be used in predicting regime shifts towards desert in water limited ecosystems

[39, 45, 78, 96, 164, 170]. Such a reduction in uphill movement is not in general

observed for patterned solutions in which both species coexist. Depending on a

pattern’s wavelength, its migration speed may be increasing or decreasing as the

wavelength contour passes through a stability boundary and no clear parametric

trends of the uphill movement of the pattern close to a wavelength change can be

deduced.

A further significant result obtained from a comparison of stability regions for the

three patterned solution types in (6.2) is that key features of the coexistence pattern,

such as its wavelength and migration speed, are dominated by and very similar to

those of the single-species pattern of the species with faster growth rate (Fig. 6.8).

Moreover, if F is sufficiently small, i.e. the species with higher average fitness is

growing sufficiently slowly, the Busse balloon of the coexistence patterns and the

single-species patterns of the fast-growing species do not overlap, as coexistence

patterns are stable for precipitation levels that are higher than those in which the

single-species patterns are stable. By contrast, the rainfall levels in which coexistence

patterns are stable and the single-species patterns of the slow growing species are

stable in the context of the single-species model, overlap. An important implication

of this is a facilitative effect of the fast growing species on the species with a slower
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Figure 6.6: Wavelength changes due to decreasing precipitation. Single-species pat-
terns ((a) and (c)) and multispecies patterns ((b) and (d)) are shown for different
precipitation levels to visualise the difference in the wavelength selection at destabil-
isations due to decreasing rainfall. The first row shows stable patterns for A = 5.
As A is gradually decreased to A = 4, both patterns lose their stability. The
single-species pattern ((a) and (c)) selects a solution of higher wavelength, while the
multispecies pattern ((b) and (d)) assumes a pattern of lower wavelength.

152



Chapter 6: Spatial self-organisation enables species coexistence in savannas

Figure 6.7: Existence and stability of coexistence patterns. The Busse balloon
(parameter region of stable patterns) of patterned solutions of (6.2) in which both
species coexist is shown embedded in the existence regions of such solutions in the
(A, c) parameter plane. Existence and stability boundaries are computed using the
numerical continuation methods outlined in Sec. 6.8. Wavelength contours are
visualised using black solid lines. Note that stability boundaries may extend into
regions that are neither marked as stable nor unstable, since biologically irrelevant
coexistence patterns with negative densities occur outside the shaded parameter
region.

growth rate. More precisely, there exist precipitation levels in which, in the absence

of a second species, the slow growing species assumes a patterned state with u2 close

to zero in the troughs of the pattern, but in which also coexistence patterns are

stable. Hence, while minu2 � ‖u2‖ in the absence of a competitor, minu2 ≈ ‖u2‖ if

a faster growing species is present in the system. Thus, u2 can attain relatively high

densities throughout the whole domain, if it coexists with a faster growing species,

instead of appearing as an oscillation between a high density and a biomass level

close to zero. This facilitative effect is a case of ecosystem engineering, a term coined

to describe changes to environmental conditions caused by a species that creates a

habitat for other species [93].

6.6 Phase difference

A striking feature of periodic travelling wave solutions of (6.2) in which both species

coexist (see e.g. Fig. 6.1) is a slight phase difference between the oscillations of the
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Figure 6.8: Busse balloons of patterns in the system. This figure visualises the
Busse balloons (regions of stable patterns) for the coexistence patterns and the
single species grass patterns that occur as solutions of (6.2). For the parameter
values chosen in this visualisation, patterns of u2 are always unstable. Wavelength
contours are given as solid lines, and their colour indicates the solution type they
represent. Solid lines correspond to stable solutions (inside the respective Busse
balloon), dashed lines to unstable patterns.
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two plant species. All model parameters affect the slight shift in the solution profile,

but the ratio of the plant species’ diffusion coefficients D is found to play the most

significant role, as it determines which plant species has higher biomass in the uphill

direction.

In the one-species Klausmeier model, the plant density and water density of a

patterned solution are typically antiphase (i.e. the peaks in the plant density are

at the same locations as the troughs of the water density and vice versa) [98, 186].

Similarly, in the multispecies model (6.2), the total plant density u1 + u2 and the

water density w are also antiphase. The two components of the total plant density

(i.e. the grass density u1 and the tree density u2), however, are slightly out of phase.

In the solution shown in Fig. 6.1, for example, local maxima of the grass density

u1 are located a short distance in the uphill direction (increasing x) away from the

corresponding local maxima in the tree density u2.

Numerical continuation can be used to obtain an insight into the effects of vari-

ations in the PDE parameters on the phase difference (Fig. 6.9). Changes in para-

meters can have large effects on the period of the patterned solution. We therefore

consider the relative phase difference φ := (arg max(u1) − arg max(u2))/L, where

the maxima are taken over one period 0 < x < L, instead of the absolute distance

between the two maxima. The tracking of the relative phase difference in solu-

tions obtained through numerical continuation shows that the diffusion coefficient

D, which describes the ratio of the two plant species’ diffusion coefficients, has the

most significant effect on the phase difference between the species. If the phase

difference φ is defined as above, then it decreases monotonically with increasing D.

In particular, it changes its sign close to D = 1. In other words, if both plant

species have similar diffusion coefficients, then their phase difference is small. Note

that φ = 0 does not necessarily occur at D = 1, as other model parameters affect

the phase difference. The sign change of φ corresponds to a change in the species

which leads the uphill movement of the pattern. Neglecting the phase difference’s

behaviour in the immediate vicinity of D = 1, it can be summarised that over one

period, the faster dispersing species’ maximum and minimum is located a small

distance ahead in the uphill direction of the spatial domain.

6.7 Discussion

Previous modelling of the savanna biome using nonspatial ODE and impulsive dif-

ferential equations models (see [244] for a review) has successfully identified a range

of different mechanisms that stabilise species coexistence based on key differences

between grasses and trees. Examples include disturbances that affect species asym-

metrically, such as different functional responses in the description of grazing and
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Figure 6.9: Phase difference between the
plant species. This figure visualises the
absolute value of the relative phase dif-
ference in coexistence solutions of (6.2)
under changes to the diffusion coefficient
D, obtained through numerical continu-
ation. The colours indicate the sign of
φ, which changes at D ≈ 1, i.e. when
the species’ dispersal behaviour is sim-
ilar. Note the logarithmic scale. The
precipitation parameter is A = 4.5 and
the migration speed is set to c = 0.15.

browsing [204] or variations in the species’ susceptibility to fires [245]; an age struc-

ture of trees with different competitive abilities of tree seedlings and adult trees [15,

43]; or resource niche separation [226]. Model results presented in this chapter sug-

gest that the consideration of spatial interactions in savanna ecosystems can provide

an alternative mechanism for species coexistence, as spatial self-organisation prin-

ciples can facilitate the stable coexistence of grasses and trees in savannas. The

novelty of the tree-grass coexistence in model solutions presented in this study is

that both species considered in our multispecies model (6.2) differ only in basic

parameters, such as growth rate and mortality rate, and, in particular, satisfy the

same single-species model (6.1) for their respective parameter sets.

Solutions of (6.2) in which both species coexist occur, provided that the species

with inferior average fitness has a sufficiently large growth rate (Sec. 6.4). The

average fitness difference B2−FB1 between the species only depends on the species’

growth and mortality rates and determines the system’s behaviour in a spatially

uniform setting. In particular, B2−FB1 = 0 separates the disjoint stability regions

of the system’s spatially uniform single-species equilibria. The consideration of spa-

tial interactions enables species coexistence as it allows for the capture of effects

caused by a positive feedback between local vegetation growth and water redistri-

bution. Patterns of biomass and water densities in the multispecies model (6.2) and

the single-species Klausmeier model (6.1) are antiphase (i.e. high water densities

in regions of low biomass densities and vice versa). This is due to the depletion of

water in regions of high biomass due to the nonlinear dependence of water uptake on

the plant densities. The species with faster growth rate (but inferior average fitness)

can utilise the higher resource densities in regions of lower biomass through a fast

increase in its density in such regions. In the long term, however, it is outcompeted

by the species of higher average fitness. This balance between local facilitation by

the species of higher average fitness and the fast colonisation ability of the species
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with larger growth rate creates a balance in which coexistence of both species is

possible.

This result is at odds with those by Durrett and Levin [56], who show that

the interplay of local competitiveness and dispersal behaviour it is not sufficient

to explain species coexistence in a general competition model, even though it has

significant effects on the asymptotic behaviour of the system. A crucial difference

between the model by Durrett and Levin and our multispecies ecohydrological model

(6.2) is the lack of spatial self-organisation principles in the former. Indeed, if the

pattern-inducing feedback is removed from (6.2), i.e. the infiltration enhancement

terms (u2 +Hu2) are set to unity, no species coexistence occurs in the model. This

further emphasises that stable coexistence of the two species is indeed enabled by the

spatial heterogeneity in the environmental conditions (water density), which is itself

caused by the positive feedback between local plant growth and water redistribution

towards high density biomass patches.

The model presented in this study can capture two distinct spatially nonuniform

outcomes. Single-species patterns of either species are stable solutions of the system

and resemble bands of vegetation that alternate with stripes of bare soil on sloped

terrain. In terms of the biomass density, the plant density oscillates between a high

level and a level close to zero. By contrast, the second stable patterned solution

type features oscillations of both plant species between two non-zero biomass levels.

This resembles a savanna state, as plant cover is continuous and no regions of bare

soil exist. For typical parameter values of a grass species u1 and a tree species u2,

the precipitation intervals of stable (in the sense of the single species model (6.1))

single-species tree patterns and stable savanna solutions overlap. This results in the

existence of precipitation volumes in which grasses have a local facilitative effect on

trees. Under such rainfall regimes and in the absence of a grass species, trees can

only attain a patterned state in which the tree density oscillates between a high level

of biomass and biomass level close to zero. However, if additionally a grass species is

considered in the system, trees can coexist with grasses in the whole space domain

without the troughs of the oscillations being close to zero. While the total tree

biomass decreases if trees coexist with grass, grasses have local facilitative effects

on trees as they cause local increases in the tree density. Facilitation occurs due to

improvements in environmental conditions. Grasses increase water infiltration into

the soil and thus increase resource availability which is utilised by trees, if they are

the superior species in a spatially uniform setting. This type of facilitation due to

alterations in environmental conditions is referred to as ecosystem engineering [93].

It is well documented in both empirical (e.g. [140, 158]) and modelling studies (e.g.

[76, 133]) that trees can act as ecosystem engineers and facilitate the growth of

grass in their vicinity. Our model results suggest that grasses may act as ecosystem
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engineers too, a mechanism that was established to be the driving force of species

coexistence in a model for dryland vegetation patterns by Baudena and Rietkerk

[16] and backed up by field studies [5, 117].

The plant species’ diffusion coefficients ratio D has a significant influence on the

coexistence solution dynamics. In particular, it quantitatively affects the size of the

parameter region giving species coexistence (Sec. 6.4). If both species diffuse at

the same rate (D = 1), then coexistence patterns occur if the species with superior

average fitness has a slower growth rate. In this case, the inferiority of one species’

competitive abilities is balanced by its advantage in its colonisation abilities. The

requirement of this crucial balance for species coexistence has already been noted

in the early savanna model by Tilman [213]. However, in any nonspatial model,

spatial spread cannot be distinguished from local growth in the description of a

species’ colonisation abilities. In the PDE model in this study, a comparison of local

growth rates is only equivalent to a comparison of the plant species’ colonisation

abilities if the plant species do not differ in their diffusion coefficients. If, however,

the inferior competitor in the spatially uniform setting diffuses at a faster rate,

then higher growth rates of the superior species are tolerated. Similarly, coexistence

patterns also occur if the species of higher average fitness is also superior in its

spatial spread, provided that its local growth rate is sufficiently small.

In the context of species coexistence in vegetation patterns, Nathan et al. [145]

found that under the assumption that two species decay at an equal rate, coexist-

ence requires a species that is superior in both its competitive (defined by plant

growth only) and dispersal abilities, due to a trade-off between spatial spread and

local growth. Our results on pattern existence attempt to bridge a gap between the

apparent mismatch between the predictions by Tilman [213] and Nathan et al. [145].

We emphasise that it is essential to consider spatiotemporal models that consider

growth and death of plants separately, to gain an understanding of species coex-

istence. Our results show that, in this case, the complex system dynamics enable

species coexistence in different parameter regimes that cover the predictions by both

Tilman [213] and Nathan et al. [145]. In particular, the spatial self-organisation of

plants that induces a nonlinear description of biomass growth, renders it insufficient

to consider a plant species’ competitive ability by one parameter only. The use of

the notion of the average fitness of a plant species, comparing its growth rate to its

mortality rate, as a measure of its competitive abilities instead, allows to overcome

the proposed trade-off between spatial dispersal and local plant growth and enables

coexistence of species if the superior competitor diffuses at a slower rate.

Coexistence of species as a model outcome is not limited to the parameter re-

gions discussed above. If no solution with species coexistence occurs in the model,

coexistence can occur as a long transient state (towards a stable single-species state),

158



Chapter 6: Spatial self-organisation enables species coexistence in savannas

provided that the average fitness difference between the two species is sufficiently

small (Fig. 6.4). We have discussed the concept of metastability as a coexistence

mechanism in Chapter 5 [63], using a model very similar to the multispecies model

considered in this chapter. The differences between the two models do, however,

not qualitatively affect the metastability property. Metastability is characterised by

the small (but positive) growth rates of perturbations to a single-species equilibrium

that becomes unstable as a competitor is introduced. The size of the growth rate

is controlled by the average fitness difference between both species and thus coex-

istence can occur as a long transient state if the species’ competitive abilities are

similar, even if coexistence is unstable.

The metastability property is a feature of the spatially uniform model and thus

independent of the slope parameter ν [63] (Chapter 5). Hence, metastable coexist-

ence also occurs in the system if the terrain is assumed to be flat. The analysis of the

stable coexistence states in Sec. 6.4-6.6, however, is only valid on a sloped terrain, as

the application of the numerical continuation techniques used in the bifurcation and

stability analyses rely on the advection term in the equation for the water dynamics.

Numerical integration of the PDE system, however, shows that a gradual decrease of

the slope parameter to ν = 0 does not qualitatively change the behaviour of a stable

coexistence state (in particular the phase difference between the total plant density

and the water density). By contrast, PDE simulations starting from a randomly

perturbed uniform state with the slope parameter fixed to ν = 0 yield coexistence

solutions in which the pattern wavelength changes frequently. While there is a clear

indication that coexistence of species is a potential model outcome on flat ground,

the investigation of the system dynamics would require an application of different

analytical tools, which is beyond the scope of this study.

A distinctive feature of spatially nonuniform solutions of out model is a slight

phase difference between both species (Sec. 6.6). Such phase differences have been

recorded in empirical studies on species coexistence in vegetation bands of semi-arid

ecosystems, with grasses reported to be the dominant species in the uphill regions

of a stripe, while trees were observed to attain their maximum densities in the

central regions of a stripe [41]. Our model is unable to reproduce stable solutions

that represent species coexistence in vegetation bands, but nevertheless predicts a

phase difference between the two species coexisting in a spatially non-uniform sa-

vanna state. In particular, in the context of coexistence of grasses and trees (grasses

disperse faster than trees), our analysis suggests that the biomass peaks of the herb-

aceous species are located in the upward direction of the biomass peaks of the woody

species. While we are not aware of any data on species-specific biomass distribution

in savanna ecosystems, this finding agrees with the empirical data that is available

for banded vegetation patterns. [41]. In our model, we describe plant spread by
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diffusion, which is a local mode of dispersal derived from a random walk, and char-

acterise differences in the plant species dispersal behaviour by different diffusion

coefficients only. In reality, however, nonlocal processes affect seed dispersal (e.g.

[25]). Effects of nonlocal plant dispersal on vegetation in semi-arid environments has

previously been studied in single-species models [20, 61, 156]. A similar approach

could be used in an extension of the multispecies model presented in this chapter

to gain more information on the biomass distribution of both species across a single

vegetation stripe.

In this chapter, we investigated the facilitative effects of spatial heterogeneities

on species coexistence in arid savannas. However, we restricted the extent of spatial

heterogeneities to those in the availability of resources caused by a self-organisation

principle in the plant populations. In doing so, we neglected potential heterogeneities

in the topography of the spatial domain, which may have a significant influence on

the ecosystem dynamics [72]. In particular, topographic nonuniformity may alter

the dynamics of water flow and thus increase the heterogeneity in the resource

availability. Such a promotion of resource niche creation could be exploited in a

future model extension to extend the theory on the facilitative effects of spatial

interactions in patterned vegetation and arid savannas.

The work presented in this study not only suggests a novel mechanism for species

coexistence in savannas, but also provides insights into other properties of the eco-

system dynamics, such as the slow uphill movement of biomass peaks or the slight

phase shift in the species distribution, as discussed above. To test these hypotheses,

a comparison with empirical data would be desirable. However, data acquisition for

dryland ecosystems is notoriously difficult. Some relevant types of data on dryland

ecosystems are available. In particular, Deblauwe et al. [48] were able to estim-

ate the uphill movement of vegetation stripes by comparing recent satellite images

with those taken by spy satellites in the 1960’s, but this relied on the clear contrast

between vegetation and bare ground - changes in vegetation type within savannas

are much more difficult to detect. Data on precipitation (both current and histor-

ical [193]) and on elevation (and hence slope) [202] are also available. But these are

insufficient to provide an effective empirical test of model (6.2). However, advances

in technologies (e.g. image processing) may in the future be utilised to extract more

data from satellite images to estimate ecosystem properties of savannas, such as

species composition or biomass densities, over large spatial scales.

The study of facilitation between species and mechanisms that promote coexist-

ence is widespread across ecology. In particular, spatial self-organisation has been

established as a key element promoting species coexistence in a variety of ecosystems.

For example, self-organisation of a macrophyte species in streams enhances envir-

onmental conditions through deflection of water and thus facilitates other species
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through a reduction in environmental stress [37]. Similarly, self-organised shellfish

reefs (in particular mussel beds) are shown to cause a significant increase in spe-

cies richness and diversity [32]. A detailed understanding of facilitative mechanisms

caused by spatial self-organisation principles is therefore relevant not only in the

vegetation dynamics of semi-arid environments, but also in a wide range of other

ecosystems, as it can provide valuable information for restoration and conservation

efforts [37].

6.8 Methods of calculating pattern existence and stability

In this section we outline the numerical continuation method by Rademacher et

al. [160] to calculate the essential spectrum of a periodic travelling wave and trace

stability boundaries of periodic travelling waves in a parameter plane, which we

utilised in our bifurcation and stability analysis in Sec. 6.4 and 6.5. We provide

an overview of the implementation of the method to (6.2), but refer the reader to

[160, 187, 189] for full details. The method described below is implemented using

the numerical continuation software AUTO-07p [53].

6.8.1 Single-species pattern existence

Single-species patterns of both the multispecies model (6.2) and the single-species

Klausmeier model (6.1) originate at a Hopf bifurcation and terminate in a homo-

clinic orbit. Numerical continuation of the Hopf locus in the (A, c) parameter plane

is straightforward. The homoclinic orbits, yielding the lower bounds on the pre-

cipitation parameter A for pattern existence, may also be calculated by means of

numerical continuation [29]. In this context, however, it suffices to approximate

homoclinic orbits by periodic travelling waves of large period L. Up to some con-

stants in the equilibria and the parameter bounds, identical considerations hold for

the second plant species u2, due to the symmetry in the model.
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6.8.2 Calculation of the essential spectrum

The starting point for the calculation of the essential spectrum of a patterned solu-

tion of (6.2) is the travelling wave system (6.3), i.e.

f (U1, U2,W ) + c
dU1

dz
+

d2U1

dz2
= 0, (6.4a)

g (U1, U2,W ) +
dU2

dz
+D

d2U2

dz2
= 0, (6.4b)

h (U1, U2,W ) + (c+ ν)
dW

dz
+ d

d2W

dz2
= 0, (6.4c)

where

f (U1, U2,W ) = WU1 (U1 +HU2)−B1U1,

g (U1, U2,W ) = FWU2 (U1 +HU2)−B2U2,

h (U1, U2,W ) = A−W −W (U1 + U2) (U1 +HU2) .

To determine the essential spectrum, it is further convenient to rewrite the PDE

system (6.2) in terms of z and t. Denoting û1(z, t) = u1(x, t), û2(z, t) = u2(x, t) and

ŵ(z, t) = w(x, t) thus yields

∂û1

∂t
= f (û1, û2, ŵ) + c

∂û1

∂z
+
∂2û1

∂z2
, (6.5a)

∂û2

∂t
= g (û1, û2, ŵ) +

∂û2

dz
+D

∂2û2

∂z2
, (6.5b)

∂ŵ

∂t
= h (û1, û2, ŵ) + (c+ ν)

∂ŵ

∂z
+ d

∂2ŵ

∂z2
. (6.5c)

Given a periodic travelling wave solution V (z) = (U1(z), U2(z),W (z)) of (6.5) (i.e.

a triplet (U1(z), U2(z),W (z)) that satisfies (6.4)), its stability is determined by the

behaviour of small perturbations to the periodic travelling wave. Under the assump-

tions that temporal perturbations to V (z) are proportional to exp(λt), λ ∈ C, i.e.

setting v̂(z, t) = V (z) + exp(λt)Ṽ (z), and linearising (6.5) about the travelling wave

solution V (z) yields that the leading order behaviour of perturbations is determined

by the eigenvalue problem

λṼ (z) = JṼ (z) + cṼ ′(z), (6.6)
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where the prime denotes differentiation with respect to z and J is the Jacobian of

the right hand side of (6.5) with respect to v̂ and its derivatives, i.e.

J =


∂f

∂û1

+ c
d

dz
+

d2

dz2

∂f

∂û2

∂f

∂ŵ
∂g

∂û1

∂g

∂û2

+ c
d

dz
+D

d2

dz2

∂g

∂ŵ
∂h

∂û1

∂h

∂û2

∂h

∂ŵ
+ (c+ ν)

d

dz
+ d

d2

dz2

 ,

evaluated at the periodic travelling wave solution V .

The eigenvalue problem (6.6) is formulated over one period L of the travelling

wave solution V (z) and needs to be equipped with boundary conditions. By defin-

ition, V (0) = V (L). The eigenfunction Ṽ (z), however, is not necessarily periodic.

The amplitude of Ṽ (z) needs to be conserved to prevent growth to ±∞, but phase

shifts are admissible. An appropriate boundary condition thus is

Ṽ (0) = Ṽ (L)eγi, (6.7)

for γ ∈ R which can be derived using Floquet theory [50, 160, 172].

The spectral stability of periodic travelling wave solutions V can then be de-

termined by finding the set of eigenvalues λ for which the eigenvalue problem (6.6)

with boundary condition (6.7) has a nontrivial solution. To do this, it suffices to

find the essential spectrum of the periodic travelling wave, as the point spectrum is

always empty [172].

The calculation of the essential spectrum is performed in two stages. First, the

special (and simpler) case of periodic boundary conditions (i.e. γ = 0) is considered.

This simplification allows for a transformation of the eigenvalue problem (6.6) into

a matrix eigenvalue problem by discretising the domain and approximating the de-

rivatives through finite differences. The matrix eigenvalue problem can be solved by

standard means and provides a starting point for a numerical continuation in γ to

complete the computation of the essential spectrum.

To implement the numerical continuation, it is convenient to rewrite the eigen-

value problem (6.6) as the first order system

˜̃
V (z)′ = (Y (z) + λX)

˜̃
V (z),

˜̃
V (0) =

˜̃
V (L)eiγ,
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where

Y (z) =



0 1 0 0 0 0

− ∂f

∂U1

−c − ∂f

∂U2

0 − ∂f

∂W
0

0 0 0 1 0 0

− 1

D

∂g

∂U1

0 − 1

D

∂g

∂U2

− c

D
− 1

D

∂g

∂W
0

0 0 0 0 0 1

−1

d

∂h

∂U1

0 −1

d

∂h

∂U2

0 −1

d

∂h

∂W
−c+ ν

d


,

evaluated at the periodic travelling wave solution V and

X =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0
1

D
0 0 0

0 0 0 0 0 0

0 0 0 0
1

d
0


.

The boundary condition is transformed into a periodic boundary condition by setting˜̃
V (z) = exp(iγz/L)α(z). Together with the normalisation z = Lξ of the domain,

this yields

α′(ξ) = (L (Y (ξ) + λX)− iγI)α(ξ), α(0) = α(1), (6.8)

where I is the identity matrix. Implementation in AUTO requires separation of real

and imaginary parts of (6.8). This yields

<(α)′ = (L (Y + <(λ)X))<(α) + (γI − L=(λ)X)=(α), (6.9a)

=(α)′ = (L (Y + <(λ)X))=(α) + (−γI + L=(λ)X)<(α), (6.9b)

<(α(0)) = <(α(1)), =(α(0)) = =(α(1)). (6.9c)

The eigenvalue problem (6.8) is not sufficient to uniquely determine the eigen-

functions α. The periodic boundary conditions allow for arbitrary phase shifts.

Thus, (6.8) is supplemented with the phase fixing condition

= (〈αold, α〉) =

∫ 1

0

(< (αold) · =(α)−= (αold) · <(α)) dξ = 0, (6.10)
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where αold is the eigenfunction α at any previous step of the numerical continuation

or the initial eigenfunction from which the continuation is started, and the inner

product is defined by

〈α1, α2〉 =

∫ 1

0

α1 · α∗2dξ,

where the asterisk denotes the complex conjugation. Further, the eigenfunction is

normalised by imposing the integral condition

〈α, α〉 =

∫ 1

0

(<(α) · <(α) + =(α) · =(α)) dξ = 1. (6.11)

Similar to the phase fixing condition (6.10) for the eigenfunction α, also the periodic

travelling wave solution V = (U1, U
′
1, U2, U

′
2,W,W

′) of (6.4) with periodic boundary

conditions requires a phase fixing condition to prevent arbitrary translations in z.

The appropriate integral condition is∫ 1

0

V ′old · (Vold − V ) dz = 0. (6.12)

Given a solution of the eigenvalue problem (6.6) with periodic boundary condi-

tions (i.e. γ = 0), the full essential spectrum can then be found by continuing the

travelling wave equation (6.4) with periodic boundary conditions and the eigenfunc-

tion equation (6.9) with the integral constraints (6.10), (6.11) and (6.12), starting

from each of the eigenvalues λ and corresponding eigenfunctions α obtained from

the matrix eigenvalue problem for γ = 0. The principal continuation parameter

is 0 < γ < 2π, while <(λ), =(λ) and L are chosen as secondary continuation

parameters. In practise, not the whole essential spectrum needs to be computed

to determine the spectral stability of a given periodic travelling wave solution. It

is sufficient to perform the numerical continuation starting only from the, say 20,

largest eigenvalues obtained form the matrix eigenvalue problem for γ = 0.

6.8.3 Numerical continuation of stability boundaries

The method described in the previous section allows for the calculation of the es-

sential spectrum of a periodic travelling wave solution for a set of given parameters.

The algorithm can further be extended to trace stability boundaries of periodic trav-

elling waves in a parameter plane, such as (A, c). Full details of this algorithm are

found in [160, 189].

To locate and trace stability boundaries, derivatives of the eigenfunctions α with
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respect to γ are required. Implicit differentiation of (6.8) with respect to γ gives

α′γ = (L (Y + λX)− iγI)αγ + (LλγX − iI)α, αγ(0) = αγ(1), (6.13)

where the prime denotes derivatives with respect to ξ and the subscript γ derivatives

with respect to γ. Further implicit differentiation yields

α′γγ = (L (Y + λX)− iγI)αγγ + 2 (LλγX − iI)αγ + LλγγXα, αγγ(0) = αγγ(1).

(6.14)

As previously discussed, implementation in AUTO requires separation of real and

imaginary parts. This yields

<
(
α′γ
)

= L (Y + <(λ)X)< (αγ) + (−L=(λ)X + γI)= (αγ)

+ L< (λγ)X<(α) + (−L= (λγ)X + I)=(α),

(6.15a)

=
(
α′γ
)

= (L=(λ)X − γI)< (αγ) + L (Y + <(λ)X)= (αγ)

+ (L= (λγ)X − I)<(α) + L< (λγ)X=(α),

(6.15b)

< (αγ(0)) = < (αγ(1)) , = (αγ(0)) = = (αγ(1)) , (6.15c)

and

<
(
α′γγ
)

= L (Y + <(λX))< (αγγ) + (−L=(λ)X + γI)= (αγγ)

+ 2L< (λγ)X< (αγ) + 2 (−L= (λγ)X + I)= (αγ)

+ L< (λγγ)X<(α)− L= (λγγ)X=(α),

(6.16a)

=
(
α′γγ
)

= (L=(λ)X − γI)< (αγγ) + L (Y + <(λX))= (αγγ)

+ 2 (L= (λγ)X − I)< (αγ) + 2L< (λγ)X= (αγ)

+ L= (λγγ)X<(α) + L< (λγγ)X=(α),

(6.16b)

< (αγγ(0)) = < (αγγ(1)) , = (αγγ) = = (αγγ(1)) , (6.16c)

respectively.

The equations given in (6.13) and (6.14) cannot determine the derivatives αγ

and αγγ uniquely, as they may contain components in the nullspace of (6.8). Hence,
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they are equipped with integral conditions given by

〈α, αγ〉 = 0 (6.17)

and

〈α, αγγ〉 = 0 (6.18)

A stability change of Eckhaus (sideband) type is detected through a numerical

continuation of the travelling wave equation (6.4), the eigenfunction equation (6.9),

the imaginary part of the eigenvalue equation differentiated with respect to γ (6.15b)

and the real part of the eigenvalue equation differentiated twice with respect to γ

(6.16a) with the corresponding boundary and integral conditions. The continuation

is started at the eigenvalue λ = 0 and its corresponding eigenfunction obtained from

the matrix eigenvalue problem that is solved in the initial stage of the algorithm. The

principal continuation parameter is the migration speed c (or the PDE parameter

A), and the five secondary continuation parameters must include <(λγγ). If a locus

with <(λγγ) = 0 is found, a stability change of Eckhaus type is detected. The

secondary continuation parameter <(λγγ) is then replaced by the PDE parameter A

(or the migration speed c) to trace out the stability boundary in the (A, c) parameter

plane.

The continuation of a stability change of Hopf type follows the same idea, but

contains some caveats. First, a fold in the spectrum is detected by a numerical

continuation of the travelling wave equation (6.4), the eigenfunction equation (6.9)

and both the real and imaginary parts of the eigenvalue equation differentiated with

respect to γ (6.15) with the corresponding boundary and integral conditions. The

spectrum may contain many folds, but only the fold with largest real part is of

interest and the continuation must start sufficiently close to that fold. The principal

continuation parameter is γ and the five secondary continuation parameters must

include <(λγ). A fold in the spectrum is located, when a zero of <(λγ) is found.

The zero of <(λγ) is subsequently fixed and the migration speed c (or the PDE

parameter A) is then chosen as the principal continuation parameter. The equations

are continued in this parameter until a zero of <(λ), which needs to be one of the

secondary continuation parameters, is found. This corresponds to a stability change

of Hopf type. Finally, <(λ) is replaced as a secondary continuation parameter by the

PDE parameter A (or the migration speed c) to trace out the locus of the stability

change of Hopf type in the (A, c) plane.
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Chapter 7

Species coexistence in vegetation patterns facilitated by the

interplay of spatial self-organisation and intraspecific

competition

The contents of this chapter are submitted for publication and a preprint is available

[60].

7.1 Author contribution

The submitted paper [60] is a single-authored paper by Lukas Eigentler.

Abstract

The exploration of mechanisms that enable species coexistence under com-

petition for a sole limiting resource is widespread across ecology. Two ex-

amples of such facilitative processes are intraspecific competition and spatial

self-organisation. A classical example of an ecosystem governed by the latter

is dryland vegetation patterns. Previous theoretical investigations have ex-

plained coexistence in patterned vegetation by making strong assumptions

on the differences between species (e.g. contrasting dispersal behaviours

or different functional responses to soil moisture). In this chapter, I show

that the interplay between the competitive effects of intraspecific competition

and the facilitative nature of self-organisation forms a coexistence mechanism

that does not rely on species-specific assumptions. I use an ecohydrological

reaction-advection-diffusion system that captures the interactions of two plant

species with an explicitly modelled resource to show that coexistence relies

on a balance between species’ colonisation abilities and their local compet-

itiveness, provided intraspecific competition is sufficiently strong. Crucially,

the requirements on species’ self-limitation for coexistence to occur differ on

opposite ends of the precipitation (resource input) spectrum. For low resource

levels, coexistence is facilitated by strong intraspecific competition dynamics

of the species superior in its colonisation abilities, but for larger volumes of

resource input, strong intraspecific competition of the locally superior species

enables coexistence. Results presented in this chapter also capture the em-
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pirically observed spatial species distribution within bands of vegetation and

propose differences in plants’ dispersal behaviour as its cause.

Keywords: banded vegetation; semi-arid ecosystems; reaction-advection-diffusion

model; mathematical modelling; competition and coexistence; pattern formation.

7.2 Introduction

A classical result of coexistence theory states that species coexistence in ecological

and biological systems cannot occur if species compete for a single limiting resource;

this is often referred to as Tilman’s R∗ rule [212]. For any given species, R∗ denotes

the smallest resource level at which that species is able to persist. The species that

can depress the resource to its lowest level (i.e. has the smallest R∗ value) is able

to monopolise the limiting resource and outcompete all other species, according to

Tilman’s R∗ rule. Nevertheless, it is evident that this principle is an oversimpli-

fication and is insufficient to fully describe the outcome of competition as species

coexistence occurs in many ecosystems despite competition for a single resource.

Hence, this suggests that other processes prevent resource monopolisation by one

species and thus enable coexistence [127].

One such mechanism that has been singled out as a common facilitator of spe-

cies coexistence is intraspecific competition (e.g. [30, 127]). The inclusion of self-

limitation due to negative density-dependent effects is an integral part of investig-

ating coexistence through Lotka-Volterra competition models (e.g. [30]). More re-

cently, such dynamics have also been added to Rosenzweig-MacArthur-type models

in which interactions of consumer species with a sole limiting resource are explicitly

modelled [127]. The impact of self-limitation on consumer competition dynamics is

that, if sufficiently strong, it limits the abundance of each species so that no single

species is able to monopolise the resource in the sense of Tilman’s R∗ rule. This al-

lows the limiting resource to be shared among two or more species and thus enables

coexistence.

A different mechanism that has been found to promote species coexistence is spa-

tial self-organisation. As opposed to local intraspecific competition, self-organisation

principles are characterised by positive density-dependent effects on short spatial

scales in combination with long-range competition for resources [166]. The formation

of spatial patterns of consumer species due to such scale-dependent feedbacks can

create spatial heterogeneities in environmental conditions (e.g. resource availability)

in otherwise homogeneous environments [37, 64] (Chapter 6). Such heterogeneous

landscapes lead to spatial separation of competitive and facilitative interactions

between different consumer species, which creates a balance that enables species

coexistence [37]. This mechanism is not unique to self-organised consumer com-
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munities, but has also been attributed to enrich species richness in other ecological

systems where the underlying spatial heterogeneities are not induced by the species

themselves [223].

A classical example of a self-organised ecosystem in which species coexistence

occurs is dryland vegetation patterns [179, 222]. This state is characterised by al-

ternating patches of high biomass and areas of bare soil and forms an interface along

the precipitation gradient between full deserts and arid savannas, where plants form

a continuous biomass cover. The self-organisation of plants into mosaics of veget-

ated patches and regions of bare soil is induced by a positive feedback between

local vegetation growth and water redistribution towards areas of high biomass [71,

166]. This is caused, for example, by the formation of biogenic soil crusts on bare

soil which inhibit water infiltration and induce overland water flow, or by the com-

bination of laterally extended root systems with a soil type that facilitates fast

water diffusion and hence causes resource redistribution below-ground [130]. As a

consequence, plants facilitate their growth on short spatial scales, but compete for

water across long spatial scales. This results in a scale-dependent feedback due to

which self-organisation occurs.

Vegetation patterns occur in a range of different shapes, including regular stripes

parallel to contours of gentle slopes [222]. Long-term field studies indicate that

such vegetation stripes gradually move upslope over a generational timescale [48].

This uphill migration occurs because the water run-off from low-permeability inter-

band regions aggregates near the top edges of existing stripes, creating a hetero-

geneous resource landscape within vegetation bands that causes upslope expansion

and downslope contraction [38]. Transects through vegetation bands typically fea-

ture a group of species dominating the upslope edges of each band (typically annual

grasses), and a group of plant types mostly confined to the centre and downslope

regions of the stripes (typically perennial grasses, shrubs and trees) [179]. The

former are often regarded as the driving force of the bands’ uphill migration and are

therefore commonly referred to as coloniser species.

In this chapter, I use banded vegetation as a case study to unite the two strands

of coexistence theory discussed above (intraspecific competition and spatial self-

organisation) in a theoretical framework. Dryland vegetation represents an ideal

candidate for such an approach, since its ecosystem dynamics have been the sub-

ject of countless mathematical modelling studies over the last three decades [21,

124, 247]. The existing modelling frameworks provide a good foundation for fur-

ther theoretical investigations of the ecosystem dynamics and in particular species

coexistence.

This chapter is not the first mathematical model to investigate species coexist-

ence in dryland vegetation patterns. Baudena and Rietkerk [16] have shown that
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coexistence can be induced by facilitation of a species unable to form spatial pat-

terns by a self-organising species. Similarly, Ursino and Callegaro [27, 220] have

included the adaptation of plant species to different soil moisture niches in a theor-

etical framework to successfully capture coexistence. However, a shortfall of both

these approaches is that they rely on the assumption that the plant species funda-

mentally differ in their interaction with the environment and are thus not applicable

to a general setting.

In a previous chapter, I have shown that self-organisation is a sufficient mechan-

ism to enable coexistence in arid savannas, where no segregation between vegetated

and bare patches occurs [64] (Chapter 6). Crucially however, I have also argued

that other processes must be involved in the facilitation of coexistence in vegetation

patterns if species do not differ in their functional responses to the environment.

This hypothesis is based on a description of the resource-consumer dynamics of two

species (or two groups of species) whose difference from each other only manifests

itself quantitatively through different parameter estimates of basic properties (e.g.

growth and death rates) but not qualitatively through different functional responses

to the environment. In this setting, coexistence occurs if one (group of) species is

superior in its colonisation abilities but is outcompeted locally by a second (group

of) species. Consequently, the former are referred to as colonisers and the later as

the locally superior species, a terminology that will be carried over to this chapter.

This mechanism only gives insights into the coexistence of both species groups. Co-

existence within those groups may occur due to other facilitative processes that are

independent of spatial self-organisation principles. For brevity, I will refer to such

species groups as single species in the remainder of the chapter.

This previous study functions as the baseline case of the unification of spatial self-

organisation and intraspecific competition dynamics in coexistence theory of veget-

ation patterns presented in this chapter. I argue that the inclusion of self-limitation

is crucial to capture coexistence of a coloniser species with a locally superior species

in vegetation patterns that occur under severe water scarcity. Moreover, the import-

ance of spatial self-organisation in the coexistence of dryland vegetation is reinforced

by the result that strong intraspecific competition of different species facilitates co-

existence at different ends of the precipitation (resource input) spectrum. Finally,

this unified approach is the first to capture the spatial species distribution within

vegetation bands, confirming verbal arguments that the patterns’ uphill migration

is indeed driven by the coloniser species [179].

This chapter focusses on the ecological implications obtained through a compre-

hensive model analysis of the system presented in Sec. 7.3 below. As such, only

stable model outcomes are considered. Nevertheless, the mathematical model also

admits unstable solutions, an analysis of which aids greatly to the understanding
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of the bifurcations in the system. A comprehensive bifurcation analysis aimed at

a more mathematics-oriented readership and an analysis of the impact of intraspe-

cific competition dynamics in single-species ecosystems are presented in a separate

chapter [59] (Chapter 8).

7.3 Model & Methods

A well-established mathematical model describing the ecohydrological dynamics of

vegetation stripes on sloped terrain is the single-species reaction-advection-diffusion

system by Klausmeier [99]. This phenomenological model stands out due to its

deliberate simplicity and thus provides a rich framework for model extensions (e.g.

[20, 35, 58, 61, 62, 120, 195]). One recent extension has introduced a second plant

species to the system, based on the assumption that plant species only differ from

each other quantitatively in their basic parameters but not qualitatively in any of

their functional responses [63, 64] (Chapters 5 and 6). This model forms the basis

of the theoretical framework presented below.

7.3.1 Model details

The per capita growth rates of both plant species in the multispecies model presented

in [63, 64] (Chapters 5 and 6) are

Gu1
∞ = w (u1 +Hu2) ,

Gu2
∞ = Fw (u1 +Hu2) ,

(7.1)

where u1 = u1(x, t) and u2 = u2(x, t) denote the nondimensional (see the supple-

mentary material for a nondimensonalisation) plant densities at time t ≥ 0 at the

space point x ∈ R. The rate of plant growth not only increases with the resource

density w = w(x, t), describing water availability, but also with both plant densities

u1 and u2. This positive density-dependence represents the short-range facilitative

effects of plants on each other which is caused, for example, by increases of soil

permeability in vegetated areas. The strength of facilitation differs between the

two species and is accounted for by the nondimensional constant H. The nondimen-

sional constant F describes the ratio of the two species’ water-to-biomass conversion

capabilities.

To account for intraspecific competition dynamics among plant species in the

theoretical framework, I convert the growth rates (7.1) into logistic-growth-type
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terms by setting

Gu1
k1

= w (u1 +Hu2)

(
1− u1

k1

)
,

Gu2
k2

= Fw (u1 +Hu2)

(
1− u2

k2

)
.

(7.2)

The parameters k1 and k2 denote the maximum standing biomasses of both species.

In this context, self-limitation does not refer to intraspecific competition for water,

as the ecohydrological dynamics are explicitly modelled. Instead, the strength of

intraspecific competition depends on other factors, such as the maximum biomass of

a single individual, which limit the total biomass a species can reach in a fixed area

[145]. The per capita growth rates (7.2) capture both the intraspecific facilitation

and intraspecific competition that occur in dryland ecosystems (Fig. 7.1). For low

biomass densities, the per capita growth rate of a species increases with that species’

density (facilitation), but decreases for higher biomass densities (competition).

Replacing the plant growth rates (7.1) in the multispecies model presented in

[63, 64] (Chapters 5 and 6) by (7.2) yields

∂u1

∂t
=

plant growth︷ ︸︸ ︷
wu1 (u1 +Hu2)

(
1− u1

k1

)
−

plant
mortality︷ ︸︸ ︷
B1u1 +

plant dispersal︷ ︸︸ ︷
∂2u1

∂x2
, (7.3a)

∂u2

∂t
=

plant growth︷ ︸︸ ︷
Fwu2 (u1 +Hu2)

(
1− u2

k2

)
−

plant
mortality︷ ︸︸ ︷
B2u2 +

plant dispersal︷ ︸︸ ︷
D
∂2u2

∂x2
, (7.3b)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation and

drainage

−w (u1 + u2) (u1 +Hu2)︸ ︷︷ ︸
water uptake by plants

+ ν
∂w

∂x︸︷︷︸
water flow

downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

, (7.3c)

where time t ≥ 0 and the space variable x ∈ R increases in the uphill direc-

tion of the one-dimensional domain, representing sloped terrain. The consideration

of a one-dimensional space domain instead of an ecologically more intuitive two-

dimensional domain is justified by the appearance of vegetation patterns as regular

stripes parallel to the contours of the slope. Solution profiles of (7.3) thus represent

a transversal cut along the gradient of the terrain.

Water is added to the system at a constant rate A and is removed through

evaporation and drainage processes that are assumed to be proportional to the

water density. Water is consumed by plants, represented by the third term on the

right hand side of (7.3c). The rate of water uptake by plants does not only depend
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Figure 7.1: Per capita plant growth
rates. Sketches of a plant species’
growth rate in the absence of intraspe-
cific competition (G∞, blue curve) and
with the inclusion of self-limitation (G10,
red curve) are shown. Even if in-
traspecific competition is considered,
the growth rate captures facilitative in-
traspecific effects of plants on each other
for low biomass densities. For larger
plant densities, the negative density-
dependent effects dominate and the spe-
cies’ growth rate decreases. Densities of
u2 and w are kept constant in this visu-
alisation.

on the total consumer density (u1 + u2), but also on the enhancement of the plants’

water consumption capabilities in areas of high biomass (u1 + Hu2), as discussed

above. Plant mortality is assumed to be proportional to plant density and occurs

at rates B1 and B2, respectively. Finally, all three densities undergo diffusion, and

water is assumed to flow downhill on the sloped terrain. The description of the latter

by advection is based on the assumption that the slope does not exceed gradients of

a few percent, consistent with field observations of striped vegetation patterns [222].

The diffusion parameters D for species u2 and d for water, as well as the advection

speed ν compare the respective dimensional parameters to the diffusion coefficient

of species u1.

In the following, I assume that u1 and u2 represent a coloniser species and a

locally superior species, respectively. A number of theoretical models on dryland ve-

getation have been proposed over the last three decades and therefore all parameter

values in (7.3) are obtained from previous models. Details on how parameter estim-

ation for those models is performed are presented in [1, 99, 125]. The distinction

between a coloniser and a locally superior species yields qualitative assumptions on

the model parameters [64] (Chapter 6). The coloniser both grows and dies at a

faster rate (F < 1, B1 > B2, but see comment below), has a stronger impact on

the soil’s permeability per unit biomass (H < 1) and disperses faster (D < 1) [64]

(Chapter 6). The locally superior species is assumed to outcompete the coloniser

species in a spatially uniform setting in the absence of any self-limitation. This re-

quires B2 < FB1 [63] (Chapter 5) and I assume that this relation holds throughout

the chapter.
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7.3.2 Model analysis

Typically, both single-species solutions and coexistence solutions of (7.3) are either

spatially constant or spatially patterned. In the latter case, these are periodic trav-

elling waves, i.e. spatially periodic functions that move in the uphill direction of the

domain at a constant speed. The uphill migration speed is an emergent property

of model solutions, but can be made explicit through a change of coordinates that

transforms (7.3) into a travelling wave framework. In travelling wave coordinates,

spatio-temporal patterned solutions can be represented by a single variable only

(see supplementary material). This facilitates a bifurcation analysis (the study of

qualitative changes to the solution structure under variations of system parameters),

which is performed by a combination of analytical tools and numerical continuation

(see supplementary material). In particular, the stability calculations of the periodic

travelling wave solutions of the system are performed using a numerical continuation

method for the calculation of essential spectra by Rademacher et al. [160].

Numerical simulations of the PDE system (7.3) are obtained using the method

of lines, with the resulting system being solved by a standard numerical solver for

ordinary differential equations (ODEs) (e.g. ode15s in MATLAB).

The spatial distribution of species in a single vegetation band is quantified by

the linear correlation between both plant species’ solution components. The linear

correlation is given by

ρ(U1, U2) =
cov(U1, U2)

σ(U1)σ(U2)
,

where U1 and U2 are two vectors obtained by discretising the spatial domain in

space and evaluating the plant densities u1 and u2 on this mesh. Here, cov(·, ·)
denotes the covariance of two vectors, and σ(·) the standard deviation. The linear

correlation satisfies −1 ≤ ρ(U1, U2) ≤ 1, and a larger correlation corresponds to a

more in-phase-like appearance of both plant patterns. Numerical continuation of

model solutions using AUTO-07p [53] allows for an exhaustive calculation of the

linear correlation in the parameter space.

7.4 Results

7.4.1 Spatially uniform coexistence

Depending on the precipitation volume, the multispecies model (7.3) has up to

four biologically relevant spatially uniform equilibria: a desert steady state that

is stable in the whole parameter space; a single-species equilibrium for each plant

species; and a coexistence state. Under sufficiently high rainfall levels, the single-
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species equilibria are stable in the absence of a second species, but may become

unstable if a competitor is introduced. Stability to the introduction of a second

species requires both sufficiently weak intraspecific competition and a higher local

average fitness than the competitor. Moreover, the stability regions of both single-

species equilibria do not overlap and it is straightforward to determine the species

of higher local average fitness based on their parameter values. In particular, only

changes to growth and mortality rates, but not variations in the strength of the

intraspecific competition can change which species is of higher local average fitness

(see supplementary material for more details).

As intraspecific competition of the locally superior species increases, its single-

species equilibrium loses stability to the coexistence equilibrium. In other words,

spatially uniform coexistence occurs if intraspecific competition among the locally

superior species is sufficiently strong compared to the interspecific competition for

water, which is quantified by the rainfall parameter (Fig. 7.2 and 7.3). The char-

acterisation of the strength of interspecific competition through such a proxy is

necessitated by the explicit modelling of the resource dynamics. This makes it im-

possible to directly quantify the competitive impact of one species on the other. In

particular, this does not allow for a quantitative comparison with the strength of

intraspecific competition dynamics, quantified by the carrying capacities k1 and k2.

Strong intraspecific competition reduces equilibrium densities and hence renders the

locally superior species unable to utilise all of the available resource. This allows

for the invasion of a second species and thus facilitates coexistence. The strength of

intraspecific competition among the locally inferior species has no significant impact

on the occurrence of spatially uniform coexistence.

For each of the non-desert equilibria of (7.3), there exists a complementary un-

stable steady state with the same species composition. Their instability for all bio-

logically realistic parameter values causes them to bear no influence on the model

outcomes discussed in this chapter. Nevertheless, details on unstable equilibria of

(7.3) can be found in the supplementary material.

7.4.2 Patterned species coexistence

Decreases in precipitation cause the spatially uniform states of (7.3) to lose stability

to spatio-temporal patterns. Patterns either feature both plant species or consist

of the coloniser species only. Single-species patterns of the locally superior species

are always unstable to the introduction of the coloniser species, despite being stable

in the absence of any competitor. In particular, a solution’s species composition is

not necessarily conserved across a transition from a spatially uniform to a spatially

patterned state. For example, if intraspecific competition of the locally superior
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Figure 7.2: Stability of spatially uniform equilibria in the nonspatial model. Stabil-
ity regions of the coexistence equilibrium and the equilibrium of the locally superior
species are shown under changes to interspecific (rainfall parameter A) and intraspe-
cific (carrying capacity k2) competition. The equilibrium of the coloniser species is
always unstable and the trivial desert steady state is stable in the whole parameter
region (not shown). Parameter values are B1 = 0.45, B2 = 0.05, F = 0.11, H = 0.11.

species is insufficient to stabilise spatially uniform coexistence, the spatially uniform

single-species state nevertheless loses stability to a coexistence pattern (Fig. 7.3 (b)).

Moreover, the precipitation volume also determines if a solution represents a

vegetation pattern or a spatially non-uniform savanna. The former state is at-

tained for low rainfall levels at which plant densities oscillate between a level of

high biomass and zero, corresponding to alternating bands of vegetation and bare

soil. By contrast, spatially patterned savanna solutions occur for larger precipitation

volumes and are characterised by oscillations between two non-zero biomass levels.

Crucially, coexistence in a vegetation pattern state is only possible if intraspecific

competition among the coloniser species is sufficiently strong (Fig. 7.3 (a) and (b)).

If self-limitation of the coloniser species is weak, then the beneficial effects of its col-

onisation abilities outweigh the local superiority of its competitor for a wider range

of precipitation volumes. The destabilisation of coexistence thus occurs at higher

rainfall levels, where solutions represent a savanna state (Fig. 7.3 (c) and (d)).

Under high-volume rainfall regimes, a unique spatially uniform stable state exists

for each value of the precipitation parameter, but multistability of stable equilibria

occurs for lower rainfall amounts. Firstly, if a spatial pattern is a stable model out-

come for a given precipitation volume, then a range of other patterned solutions are

also stable. Such patterns differ in their wavelengths (distance between two consec-

utive biomass peaks) and their uphill migration speeds (Fig. 7.3 and Fig. 7.4 (a)).
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Secondly, multistability of single-species and coexistence patterns, as well as coex-

istence patterns and spatially uniform states also occurs, especially if intraspecific

competition among the coloniser species is strong (Fig. 7.3 (a) and (b)).

This singles out patterns’ wavelengths and uphill migration speeds as crucial

pieces of information in the understanding of transitions between species coexistence

and single-species states. Typically, if a patterned state of a given wavelength loses

its stability due to changes in precipitation, a transition, such as that depicted

in Fig. 7.4 (c), to a pattern of a different wavelength occurs. The multistability

of patterned states implies that the newly attained state is not necessarily close

to destabilisation. Hence, such transitions cannot typically be reversed by simply

increasing/decreasing the precipitation volume back to its original level.

A change in wavelength is not the only possible result of a pattern’s destabilisa-

tion. If intraspecific competition of the coloniser species is strong, a large range of

coexistence patterns lose their stability to a single-species pattern (of the coloniser)

with the same wavelength as precipitation decreases. In such a case, destabilisation

results in an extinction event, despite the stability of coexistence patterns at differ-

ent wavelengths for the same environmental conditions (Fig. 7.3 (a) and (b) and Fig.

7.4). Thus, species richness in the system not only depends on precipitation volume

and species properties but also on past states of the ecosystem. In particular, the

resilience of coexistence patterns to increases in aridity depends on their wavelength

and uphill migration speed. The phenomena outlined above are examples of hys-

teresis, a well-known feature of theoretical models of vegetation patterns and other

patterned ecosystems [188].

Spatially uniform equilibria and regular spatio-temporal patterns are not the only

stable outcomes of the model system (7.3). In the absence of strong intraspecific

competition, no direct switch from regular coexistence pattern to a uniform state

of the locally superior species occurs (Fig. 7.3 (d)). Instead, this transition takes

place via a coexistence state, which lacks any regularity in space and time (example

solution plot is shown in the supplementary material). Currently, I am unable to

make any conclusive statements about this type of model solution and its ecological

implications, but note that it relies on the intraspecific competition dynamics of

both species being weak.

Similar to the spatially uniform states discussed in Sec. 7.4.1, stable patterned

model outcomes of (7.3) are also complemented by unstable solutions. While in

this context, unstable states do not have any ecological relevance, they are essential

to understand the full solution structure of the mathematical model. Examples of

bifurcation diagrams as well as more information on the bifurcations that occur in

the system are given in the supplementary material.
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Figure 7.3: Overview of stable model outcomes for different combinations of spe-
cies’ intraspecific competition strengths. The lower panel in each quadrant provides
a visualisation of the precipitation ranges in which spatially uniform (solid lines)
and spatially patterned solutions (dotted lines) are stable model solutions. The
top panel shows the stability boundaries of the patterned states in the (A, c) para-
meter plane and thus also provides information on the uphill migration speed of
stable patterns. Increases in intraspecific competition strength of the locally super-
ior species stabilises spatially uniform coexistence for lower precipitation volumes,
while strong intraspecific competition among the coloniser species promotes pat-
terned coexistence. The intraspecific competition strengths are k1 = k2 = 10 in (a),
k1 = 10, k2 = 104 in (b), k1 = 104, k2 = 10 in (c) and k1 = k2 = 104 in (d), while
other parameter values are B1 = 0.45, B2 = 0.05, F = H = 0.11, ν = 182.5 and
d = 500 in (a)-(d).
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(a) Wavelength contours of stable patterns.

(b) Transition to single-species pattern. (c) Transition to uniform coexistence.

Figure 7.4: State transitions under changing precipitation. Transitions from pat-
terned coexistence to a single-species pattern (b) and a uniform coexistence state (c)
under changing precipitation volumes are shown. Both model solutions are initiated
at rainfall volume A = 3 and a wavelength of L = 100. Solutions follow wavelength
contours (solid black curves in (a)) until they are destabilised and a pattern of a
new stable wavelength is chosen. Red dashed lines in (a) indicate the dynamics of
the solution shown in (b); purple dashed lines that of the model outcome visualised
in (c). Parameter values correspond to those used in Fig. 7.3 (a).
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Figure 7.5: The spatial correlation between the two plant species components of
model solutions under changes in the diffusion coefficient D are shown in (a). Part
(b) visualises solution profiles (u1,u2 only) for specific values of D. Correlation
increases as dispersal behaviour becomes more similar. Other parameter values are
B1 = 0.45, B2 = 0.05, F = H = 0.11, ν = 182.5, d = 500, k1 = k2 = 5 and A = 2.

7.4.3 Plant species’ distribution

Depending on system parameters, the multispecies model (7.3) captures the spatial

species distribution within vegetation stripes. In other words, the uphill edge of a

single vegetation band is dominated by one species, while its competitor is mostly

confined to a narrow region in the centre of the band.

The ratio of the plant species’ diffusion coefficients D has the most significant

impact on the correlation between both plant species (Fig. 7.5). If the species with

slower growth rate also disperses at a slower rate, then the correlation between both

species is small, as the uphill edge of each vegetation band features a high density

of the faster disperser only. As the difference between the plant species’ diffusion

coefficients becomes smaller, the correlation between the plant densities increases.

For D = 1, i.e. when both plant species diffuse at the same rate, both species

feature near the top edge of each stripe at a high density. Nevertheless, solution

components are not exactly in phase due to the faster growth and mortality dynamics

of the coloniser species. (Fig. 7.5b).

7.5 Discussion

The exploration of coexistence mechanisms that prevent competitive exclusion in re-

source limited ecosystems has been a common research topic in theoretical ecology

for many decades [30, 127, 212, 231]. The importance of considering intraspecific

competition dynamics has been established early in the history of coexistence the-
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ory (e.g. [115]). Self-limitation of species enables coexistence because it keeps their

abundances sufficiently low to prevent resource monopolisation by any one species

[30, 212]. More recently, heterogeneities caused by spatial self-organisation in oth-

erwise homogeneous environments have been singled out as an alternative potential

explanation of species coexistence under competition for a sole limiting resource [37,

64]. Interestingly, these processes are typically associated with opposite impacts

on population growth in general: intraspecific competition corresponds to negative

density-dependence in population growth, but spatial self-organisation involves local

facilitation.

In the context of dryland vegetation, a classical example of a self-organisation

principle in ecology, pattern formation on its own has been unable to explain species

coexistence across a wide range of the precipitation (resource input) gradient [64,

157]. In this chapter, I show that the combination of facilitative self-organisation

and self-limiting intraspecific competition in a theoretical framework provides more

insights into the coexistence of a coloniser species with a locally superior species in

states ranging from spatially uniform savannas to regular stripe patterns.

A widely applicable result of coexistence theory is that coexistence of two species

can occur if each species’ intraspecific competition is stronger than its impact on the

competitor species (e.g. [30, 127]). Interestingly, the combination of intraspecific

competition with spatial self-organisation dynamics show that different species’ self-

limitation is the facilitator of coexistence at opposite ends of the resource input

spectrum. This phenomenon arises despite the assumption that both species do

not qualitatively differ from each other in any of their functional responses to the

environment. Under high resource availability, for which spatially uniform plant

cover is possible, strong intraspecific competition of the locally superior species

facilitates coexistence (Fig. 7.2). If self-limitation of the locally superior species is

sufficiently strong, it cannot utilise all of the available resource and can thus allow for

coexistence with a second species [127]. In this context, local superiority corresponds

to a higher local average fitness, which is determined by the stability of spatially

uniform single-species equilibria. While in the multispecies model presented in this

chapter, the stability regions of these steady states do not overlap, complications in

the definition of the locally superior species may arise in other modelling frameworks

if bistability of single-species states occurs.

The impact of intraspecific competition changes significantly if resource availab-

ility is low. Under such environmental conditions, the spatial self-organisation prin-

ciple destabilises spatially uniform states and leads to pattern formation. Firstly,

species coexistence requires the locally superior species to be inferior in its colon-

isation abilities [64] (Chapter 6). This balance enables species coexistence due to

spatial heterogeneities in the environment, caused by the spatial self-organisation.
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The potential of intercepting resource run-off in uncolonised regions is high, which

can be exploited by the coloniser. The redistribution of water towards areas of high

biomass consequently facilitates the growth of the second species. Eventually, the

locally superior species locally outcompetes the superior coloniser, thus creating a

balance that facilitates coexistence. Secondly, coexistence in patterned form is fa-

cilitated by strong intraspecific competition of the coloniser species (Fig. 7.3 (b)).

In contrast to the coexistence mechanism which applies under high resource avail-

ability and is discussed above, the intraspecific competition’s impact on resource

availability is not the cause of coexistence. Instead, coexistence under severe re-

source scarcity is enabled by the strengthening of the facilitative balance between

the two species’ colonisation abilities and local competitiveness. In the absence

of intraspecific competition, the coloniser is able to tip that balance in its favour

by being able to colonise new areas faster than being outcompeted locally by its

competitor. Strong self-limitation prevents this and thus facilitates coexistence.

A different important aspect in the understanding of species coexistence in self-

organised ecosystems highlighted by the results presented in this chapter is hyster-

esis. As is common with pattern-forming systems, multistability of stable states

occur. In other words, given any set of parameters describing plant species and

environmental conditions, no conclusive statement about the model outcome can

be made. Instead, information about a pattern’s history is required to obtain more

information about its future dynamics. In particular, extinction events, i.e. the

transition from a coexistence state to a single-species state, cannot be pinned down

to a specific level of resource without having information about the ecosystem’s

current and past states (Fig. 7.4). Theoretical studies of history dependence in

patterned vegetation in the context of only one species highlight that this property

could be of crucial importance to advance our understanding of the ecosystem dy-

namics in general, not only of the transitions between coexistence and single-species

states [44, 188]. Hysteresis is believed to be of crucial importance in many ecosys-

tems [218], but empirical evidence of history dependence in patterned ecosystems is

challenging to detect [49] and only limited empirical data on the phenomenon exists

[216].

A novelty of results presented in this chapter is the proposal of a coexistence

mechanism for dryland vegetation patterns that does not rely on species-specific

assumptions. Previous theoretical models on the subject suggest that species co-

existence in vegetation patterns is only possible if only one species contributes to

the system’s pattern-forming feedback loop [16, 145] or if plant species adapt to

different soil moisture niches [27, 220]. By contrast, the coexistence mechanism

presented in this chapter exclusively relies on comparative assumptions (e.g. one

species being superior in its colonisation abilities while having a lower local average
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fitness than its competitor). As a consequence, it applies to a wider combination of

plant species and may be extended to other consumer-resource systems governed by

self-organisation principles, for example shellfish reefs [32].

It is worth emphasising that the coexistence mechanism attributed to spatial self-

organisation presented in this chapter differs from that proposed in a different class of

models: rock-paper-scissor-type systems. In those models, coexistence is facilitated

by competitive hierarchies of three or more species that follow the idea of the well-

known children’s game of the same name. Under such assumptions, spatial self-

organisation occurs due to spatial segregation and leads to each coexisting species

occupying its own habitat in a larger spatial domain [7, 97, 112, 161]. By contrast,

the ecohydrological model presented in this chapter captures species coexistence

within single patches of vegetation, in agreement with field observations [179, 222].

Moreover, it also captures both the uphill movement of vegetation stripes and the

spatial species distribution within vegetation bands (Fig. 7.5b). Field observations

of banded vegetation patterns report that the top edge of each stripe is dominated by

annual grasses [179], thus coined to be the coloniser species, while other species are

mostly confined to the centre and lower regions of each stripe. The comprehensive

analysis of spatial correlation between both plant species in coexistence solutions of

(7.3) shows that the spatial species distribution in a single vegetation band mainly

depends on the plant species’ dispersal behaviour. The faster the diffusion of the

coloniser species in relation to its competitor, the more pronounced is its presence

at the uphill edge of the stripe. This confirms the empirical hypothesis that the

pioneering character of grasses in grass-tree coexistence is indeed caused by the

faster dispersal of the coloniser species [179].

In the model presented in this chapter, all intraspecific dynamics are combined

into one single parameter for each species. To gain a better understanding of how

the balance between intraspecific and interspecific competition enables species co-

existence, more information on these dynamics is needed. Promising first steps

have been made through the explicit inclusion of (auto-)toxicity effects on interact-

ing plant species [119]. These suggest potential avenues of further exploration in

both the context of vegetation patterns and more general modelling frameworks for

species coexistence within ecosystems in which both spatial self-organisation and

intraspecific competition dynamics play a significant role.

7.6 Supplementary material

7.6.1 Dimensional model and its nondimensionalisation

The nondimensional multispecies model used in the manuscript is obtained from the

dimensional model
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(7.4c)

The model is based on the single-species reaction-advection-diffusion model by Klaus-

meier [99] and is an extension of the multispecies models used in [63, 64] (Chapters 5

and 6). The spatial domain is one-dimensional and x ∈ R (units: m) increases in

the uphill direction if the terrain is assumed to be sloped. Plant densities at time

t ≥ 0 (years) and x ∈ R are denoted by ui(x, t) (kg m−1) and the water density by

w(x, t) (kg m−1).

A constant amount of water is added to the system per unit time, represented by

α6 (kg m−1 years−1) in the model. Water evaporation and drainage effects occur at

rate α7 (years−1). Water uptake is the product of three terms: the resource density

w, the total consumer density u1+u2 and a term representing the increase in resource

available for consumption in dense biomass patches α
(1)
2 u1 + α

(2)
2 u2. The constants

α
(1)
2 and α

(2)
2 (both m2 years−1 kg−2) account for the strength of each species’ resource

availability enhancement. In the absence of intraspecific competition, plant growth

of each species directly corresponds to its water consumption and α
(1)
1 and α

(2)
1 (both

dimensionless) quantify the species’ water to biomass conversion ability. Further,

plant growth is limited by density dependent effects, here modelled by a logistic

growth-type term with carrying capacities α
(1)
10 and α

(2)
10 (both kg m−1), respectively.

Plant mortality occurs at constant rates α
(1)
3 and α

(2)
3 ( both years−1), respectively.

Finally, both plant densities and the water density undergo diffusion with coefficients

α
(1)
5 , α

(2)
5 (both m2 years−1) and α9 (m2 years−1), respectively. If the model is

considered on sloped terrain, then water is assumed to flow downhill, modelled by

advection with speed α8 (m years−1).

A suitable nondimensionalisation of (7.4) is given by
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Substitution into (7.4) and dropping the tildes for brevity gives the nondimen-

sional model (7.3).

7.6.2 Methods for model analysis

Transformation into travelling wave coordinates

Typically, model solutions of (7.3) are either spatially uniform or spatially pat-

terned. In the latter case, they are periodic in space and move in the uphill dir-

ection of the spatial domain at a constant speed. Thus, spatial patterns in (7.3)

belong to the class of periodic travelling waves, an important class of solutions for

many reaction-advection-diffusion equations. Periodic travelling waves allow for a

coordinate transformation to a comoving frame, as they can be represented by a

single variable z = x− ct, where c ∈ R is the migration speed of the solution profile.

This coordinate transformation and setting u1(x, t) = U1(z), u2(x, t) = U2(z) and

w(x, t) = W (z) reduces the PDE system (7.3) to the ODE system

WU1 (U1 +HU2)

(
1− U1

k1

)
−B1U1 + c

dU1

dz
+

d2U1

dz2
= 0, (7.5a)

FWU2 (U1 +HU2)

(
1− U2

k2

)
−B2U2 + c

dU2

dz
+D

d2U2

dz2
= 0, (7.5b)

A−W −W (U1 + U2) (U1 +HU2) + (c+ ν)
dW

dz
+ d

d2W

dz2
= 0. (7.5c)

Spatially patterned solutions of the PDE system (7.3) correspond to limit cycles

in the travelling wave ODE system (7.5). If a patterned solution exists in the PDE

system (7.3) for a given value of the bifurcation parameter, here the precipitation

volume A, then limit cycles in the ODE system (7.5) exist for a range of different
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wavespeeds c at different wavelenghts.

Bifurcation analysis

Properties of spatially uniform single-species states in the model are analytically

tractable and an overview is provided below (Sec. 7.6.3) and can also be found in

[59] (Chapter 8). Other properties of single-species states (pattern onset, pattern

existence and pattern stability) as well as those of coexistence states (spatially uni-

form equilibria, pattern onset, pattern existence) are determined through numerical

continuation using AUTO-07p [53]. Besides standard numerical continuation tech-

niques, this also requires an understanding of the patterns’ stability, which can be

obtained from the patterns’ essential spectra. Those are calculated using a numer-

ical continuation method by Rademacher et al. [160]. I refer to [160, 187, 189]

for full details on the method, and to [64] (Chapter 6) for details on the method’s

implementation for a model similar to (7.3).

7.6.3 Stability of spatially uniform single-species states

The trivial and semi-trivial biologically relevant spatially uniform equilibria of (7.3)

are the desert steady state (uD1 , u
D
2 , w

D) = (0, 0, A), the single-species state

(
u±1 , 0, w

±
1

)
=

A±
√
A2 − 4B1

(
B1 + A

k1

)
2
(
B1 + A

k1

) , 0,
A

1 +
(
u±1

)2

 ,

of the coloniser species u1, which exist provided

A > A
(1)
min := 2B1

(
1

k1

+

√
1 +

1

k2
1

)
,

and the single-species state

(
0, u±2 , w

±
2

)
=

0,

FHA±
√

(FHA)2 − 4B2H
(
B2 + FHA

k2

)
2H
(
B2 + FHA

k2

) ,
A

1 +H
(
u±2

)2

 ,

of the locally superior species, which exist provided

A > A
(2)
min :=

2B2

FH

(
1

k2

+

√
H +

1

k2
2

)
.

Further, a pair of spatially uniform coexistence equilibria (uC,±1 , uC,±2 , wC,±) ex-
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ists. Even though a closed-form expression can be obtained, the equilibria’s algeb-

raic complexity makes any analytical approach infeasible and the their properties

are instead addressed through numerical continuation techniques.

The stability of trivial and semi-trivial spatially uniform equilibria to spatially

uniform perturbations is determined by a standard linear stability approach. The

desert steady state (uD1 , u
D
2 , w

D) is always linearly stable (eigenvalues of Jacobian

are −B1, −B2, −1). The equilibrium (u1
+, 0, w1

+) of the coloniser species is stable

for

A < A(1)
u :=

B2
2 + k2

1 (B2 − FB1)2

Fk1 (B2 − FB1)
,

provided 0 < B2 − FB1 < FB1 and k1 >
√
B2(2FB1 −B2)(B2 − FB1)−1, and

unstable otherwise. The single-species equilibrium (u1
−, 0, w1

−) is always unstable.

The equilibrium (0, u+
2 , w

+
2 ) of the locally superior species is stable for

A < A(2)
u :=

F 2B2
1 +Hk2

2 (B2 − FB1)2

FHk2 (FB1 −B2)
,

provided −B2 < B2 − FB1 < 0 and k2 >
√
B1FH(2B2 − FB1)(H(FB1 − B2))−1,

and unstable otherwise. The single-species equilibrium (0, u−2 , w
−
2 ) is always un-

stable.

Note that the stability regions of the single-species spatially uniform equilibria

never overlap, because A
(1)
u A

(2)
u < 0. The sign of Aiu is determined by B2−FB1, the

local average fitness difference between both species in the absence of intraspecific

competition [63] (Chapter 5). Thus, only the single-species state of the species of

higher local average fitness can be stable.

The instabilities that occur as A is increased are due to the introduction of the

competitor species, which causes the single-species state to lose stability to the coex-

istence equilibrium. In the corresponding single-species models, both (u+
1 , 0, w

+
1 ) and

(0, u+
2 , w

+
2 ) are stable for any precipitation value in their existence ranges if Bi < 2.

Parameter estimates for dryland species consistently predict plant mortalities well

below this threshold and thus Bi < 2 is assumed throughout the analysis.

Existence and stability of the coexistence equilibrium (uC
+

1 , uC
+

2 , wC+) are found

using the numerical continuation software AUTO-07p [53] and are presented in the

main text. Its complement (uC
−

1 , uC
−

2 , wC−) is always unstable.

7.6.4 Patterned model solutions

The stability diagrams presented in Fig. 3.2 of the main text only provide inform-

ation on stable model solutions under changes to precipitation and intraspecific
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competition strength. Nevertheless, unstable patterns provide useful information

on how different stable states are connected in the system. Thus, a full bifurcation

analysis can yield more insights into the model system. Fig. 7.6 in the supple-

mentary material visualises corresponding bifurcation diagrams (for one fixed uphill

migration speed only) obtained through numerical continuation. Note that the co-

existence equilibrium may exist at negative densities of the inferior local competitor

and this is visualised as negative biomass in Fig. 7.6. Further, single species states

of u1 are shown as horizontal lines at u2 = 0 in the bifurcation diagrams for u2 and

vice versa.

Bifurcation analysis of (7.3) establishes two different mechanisms as the cause

of coexistence pattern onset; a Hopf bifurcation of the spatially uniform coexistence

equilibrium, and a stability change of a single-species pattern due to the introduction

of a competitor species. As a consequence, a coexistence pattern connects a single-

species pattern to either the spatially uniform coexistence equilibrium (Fig. 7.6a

and 7.6c) or the single-species pattern of its competitor (Fig. 7.6b) in the parameter

space.

The onset of spatial patterns via a Hopf bifurcation of a spatially uniform equi-

librium is a classical result of bifurcation theory (e.g. [142]). Coexistence pattern

onset at such a bifurcation is inhibited (i.e. shifted to lower precipitation volumes)

by both weak intraspecific competition of the superior coloniser and strong intraspe-

cific competition of the locally superior species.

To understand the onset of coexistence patterns from a single-species pattern,

information on the latter’s stability is required. The stability properties can be

split into two distinct and independent mechanisms. To be stable, a single-species

pattern requires to be both stable in the absence of a second species and stable to

the introduction of its competitor. Onset of coexistence patterns occurs if a single-

species pattern loses/gains stability to the introduction of the second species [64]

(Chapter 6).

A transition between the two mechanisms occurs if intraspecific competition of

the locally superior species decreases. Such a decrease reduces the biomass of the

locally inferior species in the coexistence equilibrium, and leads to an intersection of

the coexistence equilibrium with the single-species equilibrium of the locally superior

species. In particular, the Hopf bifurcations on both equilibria coincide for a critical

level of the locally superior species’ intraspecific competition. This intersection

causes a switch in the onset mechanism of coexistence patterns, which hence connect

both single-species solution branches for sufficiently weak intraspecific competition

of the locally superior species (Fig. 7.6b).
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Figure 7.6: Bifurcation diagrams under changing in-
traspecific competition. Bifurcation diagrams for differ-
ent values of the carrying capacities k1 and k2 are shown.
Solid lines represent spatially uniform states, dotted lines
spatial patterns. Bold lines indicate stable states, thin
lines correspond to unstable states. A multitude of
patterned states at different wavelengths and migration
speeds exist, but only those for one fixed migration speed
(c = 0.42) are shown. Coexistence states may attain neg-
ative densities and thus their norms are multiplied by
the density’s sign to visualise this in (b). The inset in
(c) (axes limits: A ∈ [3.35, 3.55], ±‖u1‖∈ [7.45, 7.65])
shows a blow-up of the small parameter region in which
coexistence pattern occur. The intraspecific competition
strengths are k1 = k2 = 10 in (a), k1 = 10, k2 = 104 in
(b), k1 = 104, k2 = 10 in (c) and k1 = k2 = 104 in (d),
while other parameter values are B1 = 0.45, B2 = 0.05,
F = H = 0.11, ν = 182.5 and d = 500 in (a)-(d).
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Figure 7.7: Transition between regular coexistence patterns and spatially uniform
solution under weak intraspecific competition among both species. This figure shows
the long-term behaviour of a model run for the parameter set A = 9.5, B1 = 0.45,
B2 = 0.05, k1 = k2 = 104, F = H = 0.11, ν = 182.5 and d = 500. This corresponds
to the parameter region shown in Fig. 3.2 (d) of the main text in which neither a
regular spatio-temporal nor a spatially uniform equilibrium is stable.

7.6.5 Other model solutions

Regular spatio-temporal patterns and spatially uniform states are not the only pos-

sible model outcomes of the multispecies model (7.3). In the absence of intraspecific

competition, there exists an interval of the rainfall parameter in which neither of

these solution types is stable. Instead, irregular coexistence solutions, such as that

shown in Fig. 7.7 are outcomes of the model. My simulations suggest that this type

of solution only occurs in a very small region of parameter space.
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Chapter 8

Intraspecific competition in models for vegetation patterns:

decrease in resilience to aridity and facilitation of species

coexistence

The contents of this chapter are published in [59].

8.1 Author contribution

The submitted paper [59] is a single-authored paper by Lukas Eigentler.

Abstract

Patterned vegetation is a characteristic feature of many dryland ecosys-

tems. While plant densities on the ecosystem-wide scale are typically low,

a spatial self-organisation principle leads to the occurrence of alternating

patches of high biomass and patches of bare soil. Nevertheless, intraspe-

cific competition dynamics other than competition for water over long spatial

scales are commonly ignored in mathematical models for vegetation patterns.

In this chapter, I address the impact of local intraspecific competition on a

modelling framework for banded vegetation patterns. Firstly, I show that in

the context of a single-species model, neglecting local intraspecific competition

leads to an overestimation of a patterned ecosystem’s resilience to increases

in aridity. Secondly, in the context of a multispecies model, I argue that local

intraspecific competition is a key element in the successful capture of species

coexistence in model solutions representing a vegetation pattern. For both

models, a detailed bifurcation analysis is presented to analyse the onset, ex-

istence and stability of patterns. Besides the strengths of local intraspecific

competition, also the the difference between two species has a significant im-

pact on the bifurcation structure, providing crucial insights into the complex

ecosystem dynamics. Predictions on future ecosystem dynamics presented in

this chapter, especially on pattern onset and pattern stability, can aid the

development of conservation programs.
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8.2 Introduction

Approximately 40% of the Earth’s land mass are classified as drylands [162]. The

development of an understanding of ecosystem dynamics in water-deprived areas

is of considerable socio-economic importance as a similar proportion of the total

human population lives in arid and semi-arid climate zones, where agriculture is

an integral part of the economy [51]. A characteristic feature of arid ecosystems is

vegetation patterns, which form an interface between continuous vegetation cover

and full deserts.

A mechanism commonly credited with the self-organisation of plants into al-

ternating patches of biomass and bare soil is a positive feedback loop between local

growth of vegetation and resource (water) distribution towards areas of high biomass.

Several processes are the cause of such hydrological heterogeneities; for example the

formation of biogenic soil crusts on bare ground that inhibit water infiltration into

the soil and induce overland water flow, or the creation of soil moisture gradients due

to vertically extended root systems in soil types that allow for fast water diffusion

[130]. A common type of pattern is regular stripes that occur on hillslopes parallel

to the contours of the terrain [222].

Ecosystem functioning heavily depends on plant populations as they constitute

basal levels of food webs [132]. Changes to a vegetation pattern’s properties, such as

wavelength or recovery time from perturbations, can provide early warning signals

of desertification processes, a major threat for economies in drylands [79, 170]. How-

ever, the large spatial and temporal scales associated with the ecohydrological dy-

namics of vegetation patterns restrict the acquisition of comprehensive high-quality

data to specific properties (e.g. wavelength [48]) and to short time series. As a con-

sequence, mathematical modelling, and in particular continuum approaches using

systems of (potentially nonlocal) PDEs, have been established as a powerful tool to

disentangle the complex ecosystem dynamics [132]. In broad terms, PDE models for

patterned vegetation can be separated into two classes: kernel-based models that

consist of a single equation describing the nonlocal plant interactions [105, 121, 122,

124]; and ecohydrological systems of two or more PDEs that explicitly account for

the plants’ interactions with the resource [74, 75, 86, 99, 163].

A subclass of kernel-based models captures the formation of vegetation patterns

purely through nonlocal intraspecific competition among plants within a certain in-

teraction range, whose size is determined by the horizontal extension of the plants’

root network [121, 122]. By contrast, ecohydrological models explain the occurrence

of spatiotemporal patterns through a scale dependent feedback between short-range

facilitation and long-range competition for water [166]. Thereby, they commonly

neglect any local intraspecific competition dynamics other than competition for wa-
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ter, for example the release of autotoxic pathogens into the soil [126] or biomass

limits in given areas due to the maximum biomasses of single individuals [76]. In

particular, the majority of these theoretical frameworks assume that the rate of

plant growth is either independent of the plant density or increasing with biomass.

Combined with the pattern formation feedback in such models, this can result in

solutions with biomass peaks of very high densities (e.g. [20]), a mathematically

interesting but ecologically potentially irrelevant feature. A notable exception is the

Gilad et al. model [74, 75], in which the rate of plant growth approaches zero as

biomass density increases to its maximum value, and becomes negative for higher

plant densities. Nevertheless, due to differences in the various modelling frame-

works, the precise impact of local intraspecific competition for resources other than

water on the ecosystem dynamics has not been previously addressed in the context

of ecohydrological models for vegetation patterns.

It is a classical result from Lotka-Volterra competition models that the interplay

between intraspecific and interspecific competition can facilitate species coexistence

in resource-limited ecosystems, provided intraspecific competition among all species

is sufficiently stronger than interspecific competition between them (e.g. [30]). In

the context of patterned vegetation in drylands, coexistence of herbaceous (grasses)

and woody (shrubs and trees) species is commonly observed, despite the species’

competition for water [179]. Previous theoretical studies have successfully captured

species coexistence in vegetation patterns by making the assumption that only one

plant type contributes to the pattern-forming feedback [16, 145]. Such approaches,

however, are based on strong assumptions on differences between plant species, such

as contrasting functional responses to soil moisture, and may thus not be applicable

in a general setting. In a previous chapter, I have shown that strong intraspecific

competition of a species superior in its colonisation abilities can provide an altern-

ative explanation for species coexistence that does not rely on such species-specific

assumptions. I argued that a deeper understanding of the impact of intraspecific

competition in spatially extended, resource-limited ecosystems can be a key ingredi-

ent in the explanation of species coexistence [60] (Chapter 7).

In this chapter, I closely investigate the impact of local intraspecific competi-

tion dynamics other than competition for water on solutions of an ecohydrological

model for banded vegetation patterns in semi-arid environments. To distinguish

these dynamics from long-range intraspecific competition for water, I use the term

local intraspecific competition to refer to negative density-dependent effects that are

unaffected by plants at other space locations. The chapter is split into two major

parts. Firstly, I assess the effects of intraspecific competition on pattern onset, ex-

istence and stability in the context of a single-species model by comparing results to

those obtained for the corresponding model which only takes into account intraspe-
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cific competition for water (Sec. 8.3). Secondly, I extend the results presented in

[60] and Chapter 7 to provide more insights into how local intraspecific competi-

tion can enable species coexistence under competition for a sole limiting resource

by performing a comprehensive bifurcation analysis of a multispecies model (Sec.

8.4). In [60] and Chapter 7, I mainly focus on the impact of changes to local in-

traspecific competition strength of either species on the occurrence of coexistence

patterns. By contrast, in this chapter, I present details on how results relate to

earlier modelling studies that only consider intraspecific competition for water. In

particular, I investigate how the bifurcation structure, especially the onset mechan-

isms for coexistence patterns, changes under simultaneous and separate variations

of local intraspecific competition strengths of both species. Moreover, I address how

the similarity between two species affects their ability to coexist. This contrasts

with the analysis presented in [60] and Chapter 7 which is restricted to grass-tree

coexistence, a parameter setting which corresponds to large species difference in

the context of this chapter. Finally, in Sec. 8.5, I provide an interpretation and

discussion of my results.

8.3 Single-species model

8.3.1 Model

Several modelling frameworks to describe the ecohydrological dynamics in vegetation

patterns have been proposed over the last two decades (see [124, 247] for reviews).

One system that stands out due to its simplicity is the extended Klausmeier model

[99], a phenomenological reaction-advection-diffusion system which has been the

basis for many model extensions (e.g. [35, 58, 61, 62, 72, 120, 195]). To investigate

the impact of local intraspecific competition dynamics other than those for water on

the ecosystem dynamics, I adjust the plant growth rate in the Klausmeier model to

account for negative effects of crowding. The resulting model describes the dynamics

between the plant density u(x, t) and the water density w(x, t), where the space

coordinate x ∈ R increases in the uphill direction of the domain and time t ≥ 0.

After as suitable nondimensionalisation [99, 185]1, the model is

1the nondimensionalisations in [99, 185] do not include k = α1α
1/2
2 α

−1/2
3 , where α1, α2, α3

are the strength of the plant species’ local intraspecific competition, the constant quantifying the
plants’ enhancement of resource availability and the water’s evaporation rate, respectively.
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∂u

∂t
=

plant growth︷ ︸︸ ︷
u2w

(
1− u

k

)
−

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
, (8.1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

and drainage

− u2w︸︷︷︸
water uptake

by plants

+ ν
∂w

∂x︸︷︷︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

. (8.1b)

The only modification to the extended Klausmeier model occurs in the plant growth

term. In the extended Klausmeier model, plant growth is proportional to water con-

sumption by plants, modelled by u2w. The nonlinearity arises due to the short-range

facilitation by plants and thus is crucial in capturing the formation of spatiotemporal

patterns in the model. The term is the product of the consumer density (u), the

resource density (w), and a term that describes the enhancement of resource avail-

ability in existing biomass patches (u), e.g. due to an increase in soil permeability

caused by plants. While water uptake remains unaffected by the model extension,

the rate of plant growth in (8.1) is not assumed to increase without bound as the

plant density increases. Instead it is mediated by a logistic growth-type term, which

accounts for local intraspecific competition among the plant species. This type

of intraspecific competition may occur due to plant properties, such as maximum

standing biomasses of single individuals [145] or the release of autotoxic compounds

into the soil [126], but does not correspond to intraspecific competition for water;

those dynamics are accounted for explicitly through the interactions with the water

density. Moreover, in both the extended Klausmeier model and the extension (8.1),

water is added to the system at a constant rate representing precipitation, both

evaporation/drainage and plant mortality effects occur at constant rates and plant

dispersal is modelled through diffusion. Finally, the water transport terms are de-

rived from shallow-water theory, resulting in an advection (if the terrain is sloped)

and diffusion term [74]. The diffusion of water was not included in the model’s ori-

ginal formulation [99], but has become a commonly used addition (e.g. [199, 247]),

which leads to the model being referred to as the extended Klausmeier model. In

principle, the derivation of the flux from shallow-water theory yields a nonlinear

diffusion term, but evidence that model outcomes do not significantly depend on

the exact functional form has led to the simpler linear term being well-established

[145]. The parameters A, k, B, ν and d are nondimensional parameters that can

be interpreted as rainfall volume, strength of local intraspecific competition, rate

of plant mortality, speed of water flow downhill and the water diffusion coefficient,

respectively. Typical parameter estimates (e.g. [99]) suggest that ν ≈ 200 is large

compared to other model parameters, as it reflects the difference between the rate
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of water advection and the rate of plant diffusion. The terrain’s slope, however,

is not steep itself. The derivation of water flow using shallow-water theory is only

valid as long as water flow occurs as sheet flow and thus (8.1) does not apply if the

terrain’s gradient exceeds a few percent, consistent with topological data from field

observations of banded vegetation patterns [222].

The (extended) Klausmeier model neglecting local intraspecific competition can

be obtained from (8.1) by taking k →∞. This limiting case has been the subject of

extensive mathematical analyses, in particular on the onset, existence and stability

of spatial patterns [191]. Onset of patterned solutions in PDE systems usually occurs

at either a Hopf bifurcation of a spatially uniform equilibrium or at a homoclinic

solution (but see Sec. 8.4.4 for an exception). Typically, onset loci also form the

boundaries of the parameter regions in which patterns exist, unless a fold in the

solution branch occurs. The transition from uniform to patterned vegetation due to

increases in aridity occurs at a Hopf bifurcation of a spatially uniform equilibrium,

while at low rainfall volumes, patterned solutions terminate in a homoclinic solution

[191]. The homoclinic solution also provides a lower bound for the pattern existence

region, while the upper bound may occur at higher precipitation levels than those

of the Hopf bifurcation due to the occurrence of a fold. A powerful tool in the

analytical derivation of the patterns’ features is the utilisation of the size of the

advection parameter ν, which allows for asymptotic approximations valid to leading

order in ν as ν →∞.

The addition of local intraspecific competition does not have a qualitative impact

on pattern onset, existence and stability in the model but noteworthy quantitative

impacts are observed as detailed below. Besides the desert steady state vD
s = (0, A),

which exists and is stable in the whole parameter space, (8.1) admits a pair of

vegetated spatially uniform equilibria given by

v±
s =

(
u±, w±

)
=

A±
√
A2 − 4B

(
B + A

k

)
2
(
B + A

k

) ,
A

1 +
(
u±
)2

 ,

which exist provided

A > AGmin := 2B

(
1

k
+

√
1 +

1

k2

)
.

The lower branch v−
s is unstable, while the upper branch v+

s is stable to spatially

uniform perturbations if B < 2. Parameter estimates consistently suggest that plant

mortality B remains well below this threshold, and thus the case B ≥ 2 is not con-
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sidered in the analysis. As is expected, the plant density of the biologically relevant

spatially uniform steady state v+
s decreases as the strength of local intraspecific

competition increases (decrease in k).

8.3.2 Pattern onset, existence & stability

Onset of spatial patterns due to a decrease in precipitation A occurs as v+
s loses

stability to spatially nonuniform perturbations. This is referred to as a Turing-Hopf

bifurcation and different methods to analytically calculate an asymptotic approx-

imation of the rainfall threshold exist [61] (Chapter 2). In this context, this is

best performed in travelling wave coordinates; patterned solutions of (8.1) are peri-

odic travelling waves, i.e. solutions that are periodic in space and move in the

uphill direction of the domain at a constant speed c ∈ R, and motivate this ap-

proach. The transformation into a comoving frame is achieved by setting z := x−ct,
U(z) := u(x, t) and W (z) := w(x, t), which yields the travelling wave ODE system

WU2

(
1− U

k

)
−BU + c

dU

dz
+

d2U

dz2
= 0, (8.2a)

A−W −WU2 + (c+ ν)
dW

dz
+ d

d2W

dz2
= 0. (8.2b)

Patterned solutions of the PDE system (8.1) correspond to limit cycles of the

ODE system (8.2). In the PDE setting, the patterns’ features, such as their ex-

istence, would typically be investigated in a one-dimensional parameter space of a

chosen control parameter, here the precipitation volume A. However, the trans-

formation into travelling wave coordinates introduces an additional parameter, the

migration speed c. If patterns exist for a given rainfall level in (8.1), then limit

cycles with a range of different migration speeds exist in (8.2) for the same precip-

itation volume. As a consequence, the patterns’ features need to be addressed in a

two-dimensional parameter space in the travelling wave coordinates, comprised of

the chosen PDE bifurcation parameter and the uphill migration speed c.

A convenient tool to investigate pattern onset, existence and stability is numer-

ical continuation, but the size of the slope parameter ν also allows for an analytical

derivation of some properties valid to leading order in ν as ν → ∞. A signific-

ant challenge of this approach is posed by the dependence of the parameter region

in which patterns exist on the slope parameter ν. In particular, the dependence

of both A and c on ν throughout the parameter region covers several orders of

magnitude. For the standard Klausmeier model, an extensive analysis of these

dynamics exists [184, 186, 190–192]. The focus of this chapter is on c = Os(1)
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(x = Os(y) ⇐⇒ x = O(y) but not x = o(y)) as ν → ∞ but the pattern dynamics

in (8.1) for both small and large migration speeds are expected to be qualitatively

similar to those of the model without local intraspecific competition.

The rainfall level the Turing-Hopf bifurcation causing pattern onset due to a

destabilisation of the spatially uniform equilibrium is A = Os(
√
ν) [192]. An asymp-

totic approximation of this critical threshold is found by calculating the correspond-

ing Hopf bifurcation in the travelling wave framework and determining the maximum

rainfall level on the loci of Hopf bifurcations in the (A, c) plane. The method fol-

lows that used for the (extended) Klausmeier model in [61, 192] (Chapter 2). The

rescaling U = A/BU∗, W = B2/AW ∗, z = 1/
√
Bz∗, c =

√
Bc∗, Γ = A2/(B5/2ν),

κ = Bk/A and the assumption that A = Os(
√
ν) yields

U ′ = Ũ , (8.3a)

Ũ ′ = −cŨ −WU2

(
1− U

κ

)
+ U, (8.3b)

W ′ = −Γ
(
1− U2W

)
, (8.3c)

valid to leading order in ν as ν →∞, after dropping the asterisks for brevity. The

Hopf locus in the (A, c) parameter plane is calculated through a linear stability

analysis. The eigenvalues λ ∈ C of the Jacobian matrix of (8.3) are assumed to

be purely imaginary, i.e. λ = iω, ω ∈ R. This allows the Jacobian’s characteristic

polynomial to be split into its real and imaginary parts and for ω to be eliminated.

The resulting condition implicitly describes the Hopf-locus. Implicit differentiation

facilitates the explicit calculation of the rainfall threshold at which the Turing-Hopf

bifurcation occurs.

Investigation of this rainfall threshold shows that increases in local intraspecific

competition shift the Turing-Hopf bifurcation to lower rainfall levels (Fig. 8.1). The

stabilisation of the spatially uniform vegetated state is caused by a reduction in

plant equilibrium density under strong local intraspecific competition which reduces

the water requirements of the spatially uniform state.

The subset of the (A, c) parameter plane in which patterned solutions of (8.1)

exist can be mapped out using numerical continuation. In terms of the PDE control

parameter A, the pattern existence region is bounded from below by a homoclinic

solution. Methods for calculating the location of homoclinic solutions exist [29],

but for the analysis presented in this chapter it suffices to approximate homoclinic

solutions by patterned solutions of large wavelength, say L = 1000. The upper

precipitation bound of the pattern existence parameter region is given by either the
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Hopf locus or the location of a fold in the solution branch, if such a fold occurs. The

impact of local intraspecific competition is a reduction in the size of the parameter

region in which patterns exist. As discussed above, the Hopf bifurcation occurs at

lower rainfall levels if local intraspecific competition is strong and the locus of the

fold mimics this behaviour. By contrast, the homoclinic solution is located at higher

precipitation values if local intraspecific competition is strong (Fig. 8.1).

The stability of patterned solutions of (8.1) is determined through a calculation

of the essential spectrum of the corresponding periodic travelling wave solution in

(8.2). The essential spectrum S ⊂ C of a periodic travelling wave describes the

leading order behaviour of perturbations to it. Due to translation invariance of

periodic travelling waves, the origin is excluded from the following definition of

stability. If S lies entirely in {z ∈ C : <(z) < 0}, then the corresponding pattern

is stable, otherwise it is unstable. The essential spectrum is calculated through a

numerical continuation algorithm by Rademacher et al. [160], and I refer to [160,

187, 189] for full details on the method and to [64] (Chapter 6) for an overview of

an implementation to a related system. In particular, the algorithm also facilitates

the tracking of stability boundaries, such as that displayed in Fig. 8.1 based on a

numerical continuation of the spectra.

An application of this algorithm to (8.1) yields that strong local intraspecific

competition stabilises patterned solutions at slower uphill migration speeds (Fig.

8.1). However, combined with the results on pattern existence discussed above, this

also shows that the transition from patterned states to a full desert state occurs

at higher rainfall levels if local intraspecific competition is strong (Fig. 8.1). Thus,

neglect of intraspecific competition dynamics other than those for water in the model

causes an overestimation of both the patterns’ existence and stability ranges, in

particular if a species carrying capacity is small (Fig. 8.1c).

8.4 Multispecies model

8.4.1 Model

Species coexistence in dryland ecosystems has previously been addressed in several

modelling frameworks. Both Baudena and Rietkerk [16] and Nathan et al. [145]

have successfully explained tree-grass coexistence in patterned form by assuming

that only one of the two species induces a pattern-forming feedback loop. The

assumption that plant species significantly differ in their functional responses to the

environment, however, imposes a restriction on the applicability to a general setting.

To overcome this, I have introduced a modelling framework to investigate species

coexistence that does not rely on such an assumption in a previous chapter [63]

(Chapter 5).
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Figure 8.1: Local intraspecific competition stabilises spatially uniform solu-
tions and patterns at lower migration speeds. Onset, existence and stability
parameter regions of patterned solutions of (8.1) are shown in the (A, c) parameter
plane. Onset at high precipitation values occurs at a Hopf bifurcation, while onset
at low values occurs at a homoclinic solution. The existence region of patterns is
bounded below by the homoclinic solution and bounded above by either the Hopf
bifurcation or a fold in the solution branch, if it exists. Part (a) corresponds to
strong local intraspecific competition, (b) to weak local intraspecific competition.
The loci of both the Hopf bifurcation and the fold in the patterned solution branches
are shifted to lower precipitation volumes if local intraspecific competition is strong,
while the homoclinic solution occurs at higher rainfall levels. Hence, the length of
the rainfall interval in which patterns exist decreases with increasing local intraspe-
cific competition. Shown in (c), the relative difference in the size of the pattern
existence rainfall interval is given by (A∞ − Ak)/A∞, where A∞ and Ak are the
lengths of the pattern existence rainfall interval in the absence of local intraspecific
competition and for local intraspecific competition dynamics with carrying capacity
k, respectively. Moreover, strong local intraspecific competition stabilises patterns
at lower migration speeds.

201



Chapter 8: Intraspecific competition in models for vegetation patterns

If intraspecific competition dynamics are restricted to the plant’s competition

for water, this model successfully captures species coexistence as long transient

states in both a spatially uniform and a vegetation pattern state, provided that

species are of similar average fitness [63] (Chapter 5). Moreover, coexistence is

also possible in a spatially nonuniform savanna state if there is a balance between

the species’ local competitiveness and their colonisation abilities [64] (Chapter 6).

The term savanna is ambiguous and a variety of different definitions of savanna

ecosystems exist [176, 205]. In this chapter, spatially nonuniform savanna refers to

a state that is represented by periodic travelling wave solutions in which both species

coexist, their solution profiles are approximately in phase (but see Sec. 8.4.5) and

the total plant density oscillates between two nonzero biomass level. If additionally

local intraspecific competition dynamics are taken into account, then coexistence is

possible in a vegetation pattern state (periodic travelling wave solutions in which

the total plant density oscillates between a high biomass level and zero), provided

local intraspecific competition among the superior coloniser is sufficiently large [60]

(Chapter 7). In this chapter, I provide more information on the impact of local

intraspecific competition on the origin and existence of patterned model solutions

in which species coexist.

To do so, the model used in the analysis is

∂u1

∂t
=

plant growth︷ ︸︸ ︷
wu1 (u1 +Hu2)

(
1− u1

k1

)
−

plant
mortality︷ ︸︸ ︷
B1u1 +

plant dispersal︷ ︸︸ ︷
∂2u1

∂x2
, (8.4a)

∂u2

∂t
=

plant growth︷ ︸︸ ︷
Fwu2 (u1 +Hu2)

(
1− u2

k2

)
−

plant
mortality︷ ︸︸ ︷
B2u2 +

plant dispersal︷ ︸︸ ︷
D
∂2u2

∂x2
, (8.4b)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

and drainage

−w (u1 + u2) (u1 +Hu2)︸ ︷︷ ︸
water uptake by plants

+ ν
∂w

∂x︸︷︷︸
water flow

downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

, (8.4c)

after a suitable nondimensionalisation [60] (Chapter 7). The model is based on the

single-species model (8.1) presented in Sec. 8.3 and consequently all modelling as-

sumptions are identical to those taken in the single-species model. In particular,

water uptake of species ui is given by wui(u1 +Hu2) and summing over both species

yields the third term in (8.4c). In other words, each species not only facilitates its

own water consumption (and hence growth) but also that of its competitor. How-

ever, the strength of facilitation (for example due to increases soil permeability)

differs between species and this is accounted for by the nondimensional constant
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H. As in the single-species model (8.1), plant growth of a species in the absence

of local intraspecific competition dynamics is proportional to water consumption of

that species. However, to account for local intraspecific competition among species,

negative density-dependence is also included in the growth terms. The constants k1

and k2 are the maximum standing biomasses of species u1 and u2, respectively. Note

that u1 has no direct competitive impact on u2 and vice versa. Interspecific compet-

ition only occurs due to competition for water. The negative density dependence in

the growth rates thus strictly correspond to intraspecific competition, for example

due to the release of autotoxic pathogens into the soil [126]. The parameter B1 of

species u1 corresponds to B in the single-species model (8.1), while the additional

parameters F , B2 and D are all related to the newly introduced species u2 and

represent its growth, death rate and dispersal coefficient, respectively.

Moreover, the single species model (8.1) can be obtained from (8.4) by setting

one of the plant densities to zero. In the case of u1 = 0 this further requires a res-

caling. As a consequence, results presented in Sec. 8.3 also hold for the multispecies

model (8.4) in the absence of a competitor species. The introduction of a second

species nevertheless has an impact on the single-species states of the system, which

is discussed below.

The model only accounting for intraspecific competition for water is analysed

in [64] and Chapter 6. It is obtained from (8.4) by taking the limit k1, k2 → ∞.

This limiting behaviour motivates a comparison of results presented in this chapter

with those in [64] (Chapter 6), to address what impact the consideration of local

intraspecific competition dynamics has on the modelling framework. I present results

for k1 = k2 to make such a comparison, but also discuss the effects of varying k1

and k2 separately.

The main purpose of this chapter is to discuss the impact of local intraspecific

competition and further develop the understanding of coexistence of herbaceous

species and woody species in dryland ecosystems. Due to the symmetry in the model,

I assume, without loss of generality, that u1 and u2 represent a grass and tree/shrub

species, respectively. Event though the lack of detailed empirical data does not

allow for an accurate parameter estimation, model parameters can be obtained from

previous theoretical work (e.g. [99, 199]). Moreover, the distinction between a grass

and a tree species allows for qualitative assumptions on some model parameters. For

example, a plant species’ water-to-biomass conversion abilities can be deduced from

the time a population requires to attain its steady state density in the absence of

any resource scarcity or competition. Grasses reach their equilibrium densities on a

much shorter timescale than shrubs and trees, which suggests that they are superior

in their ability to convert water into new biomass (F < 1) [1]. Similarly, a species’

mortality rate can be inferred from its average lifespan. Typically, grasses have a
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much shorter lifespan than shrubs and trees which leads to a higher mortality rate

in the mathematical model (B1 > B2) [1]. The diffusion operators in (8.4a) relate

the spatial spread of each species with time. Typically, the time from germination

to the first dispersal of viable seeds is much longer for shrubs and trees, which

suggests a lower diffusion coefficient (D < 1) [64] (Chapter 6). Finally, if other

parameters are known, the constant describing local facilitation can be deduced from

a species’ equilibrium density. This is typically higher for shrubs and trees which

yields that grasses’ facilitative impact per unit biomass is stronger (H < 1) [99]. As

a consequence of these qualitative assumptions, the grass species u1 is superior in

its colonisation abilities and is thus referred to as the coloniser species or pioneer

species. In the absence of local intraspecific competition, species coexistence occurs

as a state representing a savanna biome if the inferior coloniser u2 is the superior

local competitor [64] (Chapter 6), quantified by the average local fitness difference

B2−FB1 being negative [63] (Chapter 5). In this chapter, I focus on this parameter

setting to explore the role of local intraspecific competition and species difference

in the coexistence of species in vegetation patterns. For the latter, I follow the

approach of [63] (Chapter 5) and set

B2 = B1 − χ(B1 − B̃2), F = 1− χ(1− F̃ ), H = 1− χ(1− H̃),

D = 1− χ(1− D̃),

(8.5)

where B̃2, F̃ , H̃ and D̃ are typical parameter estimates for a tree species. Thus,

the difference between u1 and u2 is quantified by a single parameter 0 ≤ χ ≤ 1.

Note that the local intraspecific competition strengths k1 and k2 are not included

in this definition as their impact is addressed separately. Unless otherwise stated,

I set B1 = 0.45, B̃2 = 0.004, F̃ = H̃ = D̃ = 0.01, k1 = 10, k2 = 10, d = 500

and ν = 182.5 and χ = 0.9. The precipitation volume A is the main bifurcation

parameter of the system.

8.4.2 Stability in spatially uniform model

As for the single-species model (8.1), an understanding of patterned solutions re-

quires knowledge of the system’s dynamics in a spatially uniform setting. The

system has up to seven spatially uniform equilibria, as visualised in Fig. 8.2.

The desert steady state vd
m = (0, 0, A), the pair of single-species grass equilibria

vg,±
m = (ug,±1 , 0, wg,±), where ug,±1 = u± and wg,± = w± and the latter’s existence

threshold A > Agmin := Amin are identical with those of the single-species model

presented in Sec. 8.3. Due to the symmetry in the model, (8.4) also admits a pair
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Figure 8.2: Linear stability of spatially uniform equilibria. The spatially uni-
form equilibria of (8.4) and their stability under changes to the precipitation volume
A are shown. Solid lines indicate stable states, dashed lines unstable states. For

high precipitation values, the coexistence equilibrium vc,+
m is stable because inter-

specific competition for water is sufficiently lower than intraspecific competition. A

decrease in A causes vc,+
m to lose stability to the single-species tree equilibrium vt,+

m .
For the parameters used in the visualisation the stability change occurs where both
equilibria intersect, but this need not be the case. Also note that at the intersec-
tion of equilibria, the coexistence steady state becomes ecologically irrelevant, as
one of the plant densities becomes negative. Nevertheless, this steady state can be
instructive for mathematical understanding of the dynamics. The grass equilibrium

vg,+
m is unstable for all A, because changes in rainfall cannot change which species

is of higher local average fitness. Here k1 = k2 = 1000 to keep local intraspecific
competition sufficiently weak. For significantly smaller values of k1 = k2 only the
coexistence equilibrium is stable.
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of single-species tree equilibria, given by

vt,±
m :=

(
0, ut,±2 , wt,±

)

=

0,

FHA±
√

(FHA)2 − 4B2H
(
B2 + FHA

k2

)
2H
(
B2 + FHA

k2

) ,
A

1 +H
(
ut,±2

)2

 ,

which exist provided

A > Atmin :=
2B2

FH

(
1

k2

+

√
H +

1

k2
2

)
.

Finally, a pair of coexistence spatially uniform steady states vc,±
m := (uc,±1 , uc,±2 , wc,±)

exists, provided precipitation is sufficiently large. While it is possible to obtain

a closed-form expression for vc,±
m , its algebraic complexity renders any analytical

approach to study its properties impracticable.

The desert steady state vd
m is always linearly stable (the eigenvalues of its Jac-

obian are −B1, −B2, −1). The grass equilibrium vg,+
m is linearly stable for

A < AGu :=
B2

2 + k2
1 (B2 − FB1)2

Fk1 (B2 − FB1)
,

provided 0 < B2 − FB1 < FB1 and k1 >
√
B2(2FB1 −B2)(B2 − FB1)−1, and

unstable otherwise. The second grass equilibrium vg,−
m is unstable. The tree equi-

librium vt,+
m is stable for

A < ATu :=
F 2B2

1 +Hk2
2 (B2 − FB1)2

FHk2 (FB1 −B2)
,

provided −B2 < B2 − FB1 < 0 and k2 >
√
B1FH(2B2 − FB1)(H(FB1 − B2))−1,

and unstable otherwise. The second tree equilibrium vt,−
m is unstable. Existence

and stability of the coexistence equilibria vc,±
m are found using the numerical con-

tinuation software AUTO-07p [53]. The lower branch vc,−
m is always unstable, while

vc,+
m is stable if intraspecific competition is sufficiently stronger than interspecific

competition. In particular, the local intraspecific competition of the locally superior

species needs to be sufficiently strong for coexistence to be stable, while that of the
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locally inferior species only has a negligible effect on the stability of the equilibrium.

The upper bounds on the rainfall parameter and other constraints required for

stability of the spatially uniform single-species equilibria are a crucial difference to

the stability results for the single-species model (8.1). As precipitation is increased,

the single-species equilibria lose their stability to the coexistence equilibrium vc,+
m ,

because an increase in resource availability causes a reduction in the strength of

interspecific competition (Fig. 8.2). In the absence of local intraspecific competition,

no coexistence equilibrium exists and no upper bound on the rainfall parameter for

stability of the single-species equilibria exists.

Moreover, both in (8.4) and in the absence of local intraspecific competition,

no bistability of the single-species equilibria can occur, as the upper precipitation

bounds satisfy AguA
t
u < 0 (Fig. 8.2). The quantity B2 − FB1, which determines the

signs of Agu and Atu, denotes the local average fitness difference between both species

in the absence of any local intraspecific competition [63] (Chapter 5). A definition

of local average fitness in (8.4) is not as straightforward as in the model with no

local intraspecific competition, but the stability thresholds AGu and ATu highlight

that local intraspecific competition cannot change which species is of higher local

average fitness.

8.4.3 Single-species patterns

Onset and existence of single-species patterns remain independent of the introduc-

tion of a second species, i.e. results presented for the single species model (8.1)

also hold for the multispecies model (8.4). By contrast, stability of single-species

patterns is significantly affected by the introduction of a competitor species and is

also related to the onset of coexistence patterns.

As for the single species model (8.1), patterned solutions of (8.4) are limit cycles

of the corresponding travelling wave ODE system

WU1 (U1 +HU2)

(
1− U1

k1

)
−B1U1 + c

dU1

dz
+

d2U1

dz2
= 0, (8.6a)

FWU2 (U1 +HU2)

(
1− U2

k2

)
−B2U2 + c

dU2

dz
+D

d2U2

dz2
= 0, (8.6b)

A−W −W (U1 + U2) (U1 +HU2) + (c+ ν)
dW

dz
+ d

d2W

dz2
= 0, (8.6c)

which is obtained from the PDE model (8.4) by setting u1(x, t) = U1(z), u2(x, t) =

U2(z) and w(x, t) = W (z) for z = x − ct, c ∈ R. As in the single-species model

(8.1), this introduces a new parameter, the uphill migration speed c, and the bifurc-
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ation analysis is performed in the (A, c) parameter plane. However, for illustrative

purposes, I fix the migration speed in the presentation of the bifurcation diagrams,

but emphasise that the results do not qualitatively depend on the choice of c, unless

otherwise stated. The transformation into the travelling wave framework enables

the calculation of a pattern’s essential spectrum to determine its stability using the

numerical continuation method by Rademacher et al. [160], and I again refer to

[160, 187, 189] for full details on the method and to [64] (Chapter 6) for an overview

on how this algorithm is implemented for (8.4) in the limit k1, k2 →∞.

Unlike pattern onset and existence, the stability of single-species patterns of

(8.4) is affected by the second species in the system. For a single-species pattern to

be stable in the multispecies model (8.4), it needs to be stable in the context of the

single-species model (8.1) and stable to the introduction of the competitor species,

two conditions that are independent of each other. The stability of a single-species

pattern to the introduction of the competitor species is determined by a comparison

of its essential spectrum in the multispecies model with that of the same solution

in the single-species model (Fig. 8.3). The spectrum of the periodic travelling wave

in the single-species model is a subset of that of the solution in the multispecies

model. The additional elements in the latter describe the leading order behaviour

of perturbations due to the introduction of the competitor species. Thus, a pattern

that is stable in the corresponding single-species model may be unstable in the

multispecies model (8.4) due to its interaction with a competitor species.

8.4.4 Onset and existence of coexistence patterns

Onset of coexistence patterns can occur through three different mechanisms. As

for the single-species patterns discussed in Sec. 8.3, two potential causes of pat-

tern onset are a homoclinic solution and a Turing-Hopf bifurcation of the spatially

uniform coexistence equilibrium vc,+
m . Onset of coexistence patterns can further

occur on a solution branch of a single-species pattern as it loses/gains stability to

the introduction of the second species. As outlined in the previous section, such a

bifurcation can be detected through a comparison of the single-species pattern’s es-

sential spectra in the context of the single-species model (8.1) and the multispecies

model (8.4). The same mechanism also causes pattern onset if only intraspecific

competition for water is considered [64] (Chapter 6). Onset at a homoclinic solution

or at a Turing-Hopf bifurcation of a spatially uniform equilibrium, however, can-

not occur if local intraspecific competition dynamics are neglected, as no spatially

uniform equilibria exist. In (8.4), solution branches of coexistence patterns either

connect two single-species patterns (the only mechanism that occurs in the absence

of local intraspecific competition), a single-species pattern with the spatially uni-
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Figure 8.3: Introduction of a second species affects stability of single-
species patterns. A comparison of the essential spectra of a single-species pattern
in the single-species model (8.1) (a) and the multispecies model (8.4) (b) are shown.
The spectrum in the single-species model is a subset of the spectrum in the multis-
pecies model. The additional elements of the spectrum correspond to the leading
order behaviour of perturbations in the density of the second species. Note that the
spectra yield that the corresponding single-species pattern is stable in the single-
species model, but unstable in the multispecies model due to the introduction of the
competitor species. The vertical lines visualise the imaginary axis. The parameter
values are A = 2 and c = 0.25. For this visualisation, a pattern of species u1 was
chosen, but identical considerations hold for single-species patterns of species u2.
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form coexistence state, or the spatially uniform coexistence state with a homoclinic

solution. The choice of which of these three mechanisms occurs depends on both the

strength of local intraspecific competition and the difference between both species,

as is outlined below.

The role of local intraspecific competition

If k1 = k2 is small and species difference is sufficiently large so that u1 and u2 rep-

resent a typical grass and tree species, respectively, two Hopf bifurcations on the

spatially uniform coexistence equilibria occur and are the origins of coexistence pat-

tern solution branches that connect to either of the single-species pattern branches.

(Fig. 8.4a). Typically, one of the Hopf bifurcations occurs on vc,−
m and patterns ori-

ginating there are of very large wavelength, beyond the L = 1000 threshold used to

approximate homoclinic solutions in this bifurcation analysis. Note that the Hopf

bifurcation on vc,−
m does not cause a stability change of the equilibrium because

a third eigenvalue with positive real part exists. As k1 = k2 increases, the spa-

tially uniform coexistence equilibrium is shifted to higher precipitation volumes and

one of its biomass components may attain ecologically irrelevant negative values.

Moreover, the Hopf bifurcation on vc,−
m moves along the solution branch, through

the fold, and onto the vc,+
m branch (Fig. 8.4b). A further increase in k1 = k2 re-

duces the distance between both Hopf bifurcations, until they coincide. Beyond this

threshold, no Hopf bifurcation along the spatially uniform coexistence equilibrium

exists. However, coexistence patterns continue to occur. As in the analysis shown

in [64] and Chapter 6 (the k1, k2 → ∞ limit of the model in this chapter), one co-

existence pattern solution branch connects both single-species pattern branches for

sufficiently large k1 = k2 (Fig. 8.4c). In other words, local intraspecific competition

shifts the existence region of both the spatially uniform coexistence equilibrium and

the spatially patterned coexistence state to lower precipitation levels and enables

coexistence pattern onset at a Hopf bifurcation on the spatially uniform equilibrium.

An investigation with one of the species’ local intraspecific competition strengths

being fixed, gives more insight into the different roles of both parameters. A de-

crease in local intraspecific competition of the coloniser species (i.e. increase in

k1) reduces the size of the parameter region for which coexistence patterns occur

(Fig. 8.6c). As is discussed in [60] (Chapter 7) and visualised in Fig. 8.6a and

8.6b, strong local intraspecific competition among the coloniser species facilitates

coexistence patterns because it shifts the upper rainfall threshold at which pattern

onset occurs to higher levels, while only having a negligible impact on the onset

at low precipitation volumes. This causes an increase in the size of the parameter

region in which coexistence patterns exist. Variations in k2, however, have a very
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(a) k1 = k2 = 10 (strong
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(b) k1 = k2 = 2000 (interme-
diate local intraspecific com-
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(c) k1 = k2 = 2100 (weak
local intraspecific competi-
tion among both species)

Figure 8.4: Strong local intraspecific competi-
tion facilitates spatially uniform coexistence and
causes coexistence pattern onset at a Turing-Hopf
bifurcation. Bifurcation diagrams for different values of
the carrying capacities k1 = k2 are shown for c = 0.25.
A decrease in local intraspecific competition increases the
size of the precipitation interval in which coexistence pat-
terns exist and simultaneously inhibits spatially uniform
coexistence. Under strong local intraspecific competition,
two Hopf bifurcations along the spatially uniform coex-
istence equilibrium exist and cause the onset of patterns.
Typically, patterns originating from the lower branch are
of large wavelength and are thus omitted form the bifurc-
ation diagram in (a). Both Hopf bifurcation loci meet in
a fold as local intraspecific competition is increased to a
critical threshold beyond which coexistence patterns con-
nect both single-species pattern branches ((b) and (c)).
Patterned states are only shown for one value of the uphill
migration speed and no stability information is provided.
In (b) and (c), ‖u1‖ is multiplied by sign(u1) to visualise
the occurrence of u1 < 0.
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Figure 8.5: Local intraspecific competition facilitates species coexistence in
vegetation patterns. Two coexistence solutions are shown. In (a), local intraspe-
cific competition is strong and the solution represents a vegetation pattern, while in
(b) a solution corresponding to a savanna state is visualised, which occurs due to
weak local intraspecific competition. Note the different values of the precipitation
parameter. A decrease in local intraspecific competition destabilises the coexistence
state at lower rainfall volumes. The species difference parameter is χ = 0.3.

similar effect as in the case of k1 = k2 (Fig. 8.6a and 8.6b). A reduction in local

intraspecific competition increases the size of the pattern existence region. In con-

trast to the k1 = k2 case, the Hopf bifurcation on the lower branch of the spatially

uniform coexistence equilibrium has no impact on the structure of ecologically rel-

evant solutions, as it exclusively occurs for parameter values at which one of the

plant densities of the coexistence equilibrium is negative. Nevertheless, a transition

to a bifurcation structure in which the coexistence pattern solution branch connects

both single-species patterns occurs as follows. As k2 increases the u1 density of the

spatially uniform coexistence equilibrium decreases and becomes negative after in-

tersecting the single-species tree equilibrium. Consequently, the Hopf bifurcation on

the equilibrium occurs for lower densities of u1 as k2 increases (Fig. 8.6a). At a crit-

ical threshold, the Hopf bifurcation crosses u1 = 0, where it coincides with the Hopf

bifurcation on the single-species tree equilibrium. For k2 larger than this threshold,

ecologically relevant patterns connect the Hopf bifurcations on the single-species

equilibria and do not extend to the Hopf bifurcation on the coexistence equilibrium

solution branch, as this occurs for u1 < 0 (Fig. 8.6b).
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(a) k1 = 10, k2 = 1500
(strong local intraspecific
competition among the col-
oniser species, intermediate
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(b) k1 = 10, k2 = 2500
(strong local intraspecific
competition among the
coloniser species, weak local
intraspecific competition
among the locally superior
species)
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(c) k1 = 1000, k2 = 10
(weak local intraspecific com-
petition among the coloniser
species, strong local intraspe-
cific competition among the
locally superior species)

Figure 8.6: Strong local intraspecific competition of the coloniser species
and weak local intraspecific competition of the locally superior species
promote patterned coexistence. Bifurcation diagrams under changing local
intraspecific competition of one-species only are shown. Both strong local intraspe-
cific competition among the coloniser species u1 and weak local intraspecific com-
petition among the locally superior species u2 increase the size of the parameter
region in which coexistence patterns exist. The insets in (a) and (b) (axes limits:
A ∈ [6.75, 7.75], ±‖u1‖∈ [−0.1, 0.1]) show the onset of coexistence patterns close to
u1 = 0 to highlight the transition from onset at the spatially uniform coexistence
equilibrium to onset at the single-species u2 pattern as local intraspecific competition
among u2 decreases. The inset in (c) (axes limits: A ∈ [3.2, 3.5], ±‖u1‖∈ [7.1, 7.3])
shows a blow-up of the parameter region in which coexistence pattern exist. The
pattern migration speed is c = 0.25. In (a) and (b), ‖u1‖ is multiplied by sign(u1)
to visualise the occurrence of u1 < 0. For an interpretation of colours and linestyles
used in the visualisation, see the legend of Fig. 8.4.
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Transition from a savanna to a patterned vegetation state

Strong local intraspecific competition also changes the solution behaviour by facil-

itating species coexistence in a state representing vegetation patterns. As discussed

above, increases in local intraspecific competition strength shift the parameter in-

terval in which coexistence patterns occur to lower precipitation volumes (Fig. 8.4).

Associated with this is a transition from a solution-type that represents a savanna

biome to a solution type that represents a vegetation pattern. Both these solu-

tion types are periodic travelling waves, but the biomass components of the former

oscillate between two non-zero levels, while those of the latter oscillate between a

nonzero plant density and zero (Fig. 8.5a and 8.5b). In general, the transition

between the two solution types is a gradual process. However, it may be accelerated

by a destabilisation and associated change in wavelength of a pattern. The savanna

state patterned solution also occurs in the k1, k2 → ∞ limit as discussed in [64]

(Chapter 6).

The role of species difference

The difference between both plant species, quantified by the parameter χ in the para-

meter setting (8.5), also has a significant impact on the bifurcation structure of the

system. In the results presented above, the difference between both species is set to

a large value so that u1 and u2 represent a grass and tree species, respectively. Under

this assumption, the onset of coexistence patterns at the lower precipitation bound

for pattern existence always occurs along the single-species grass pattern. Decreases

in the species difference χ, corresponding to simultaneous changes in parameters of

species u2 that make it more similar to species u1, cause the pattern onset locus to

move along the single-species pattern branch in a decreasing precipitation direction

towards the homoclinic solution of u1. At a critical threshold of χ, the homoclinic u1

solution coincides with the homoclinic coexistence solution and a transition of the

pattern onset type occurs. For lower values of the species difference parameter χ,

onset at low precipitation values thus occurs at the homoclinic solution (Fig. 8.7).

8.4.5 The effects of plant dispersal

As is discussed in [60] (Chapter 7), the ratio of the plant species’ diffusion coeffi-

cients D has a significant impact on the model solutions. Plant components of the

patterned model solutions are not exactly in phase. Depending on the paramet-

ers in the system, the uphill edges (and to a lesser extent the downhill edges) of

the travelling wave solutions are dominated by one species, while its competitor is

mostly confined to narrow regions in the centre of the bands. This behaviour can

be quantified through the linear correlation
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Figure 8.7: A transition from coexistence pattern onset at a single-species
pattern to onset at a homoclinic solution occurs due to increases in spe-
cies similarity. Bifurcation diagrams for different values of the species difference
parameter χ are shown in (a) and (b). A transition from coexistence pattern onset
at a homoclinic solution to onset at the single-species grass pattern occurs as species
difference increases. The type of onset point and the precipitation level at which
onset occur are tracked in (c). The pattern migration speed is c = 0.25. For an
interpretation of colours and linestyles used in (a) and (b), see the legend of Fig.
8.4.
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ρ(U1, U2) =
cov(Ũ1, Ũ2)

σ(Ũ1)σ(Ũ2)
,

between both plant densities, where cov(·, ·) denotes the covariance of two vectors,

and σ(·) the standard deviation. The vectors Ũ1 and Ũ2 are obtained by discretising

the spatial domain and evaluating the plant densities u1 and u2 on this mesh. Note

that the linear correlation takes values −1 ≤ ρ(U1, U2) ≤ 1, and a larger correlation

corresponds to a more in-phase-like appearance of both plant patterns.

An exhaustive calculation of the linear correlation in the parameter space can be

performed, as numerical continuation allows for an easy generation of model solu-

tions. The ratio of the plant species’ diffusion coefficients D has the most significant

impact on the correlation (Fig. 8.8). To specifically focus on the coexistence of

grasses and trees, I have outlined in [60] (Chapter 7) that if the species with slower

growth also disperses at a slower rate (i.e. (F − 1)(D − 1) > 0), then larger dif-

ferences in the diffusion coefficients yield smaller spatial correlations, as the uphill

edge of each vegetation band features a high density of the faster disperser only.

In this parameter setting, that species can be referred to as the pioneer species,

as it is responsible for the colonisation of the bare ground in the uphill direction,

before its competitor species utilises the increased resource availability in the newly

colonised ground. It is noteworthy that the species correlation of solutions of (8.4)

is always positive. In particular, the plant densities never occur in antiphase, i.e.

no complete spatial segregation of species takes place in the system. Increases in

the similarities of the species’ dispersal behaviour causes an increase in the spatial

correlation. In particular, the correlation attains its maximum value close to D = 1,

i.e. where both plant species diffuse at the same rate. For D = 1, the solution

profile shows both plant species to be approximately in phase (Fig. 8.8a), but the

influence of other parameters prevents the species from appearing exactly in phase.

Nevertheless, changes to other parameters do not have any qualitative impact on

species correlation in solutions of (8.4).

By contrast, if the assumption that one species both grows and disperses at a

faster rate is dropped (i.e. if (F − 1)(D − 1) < 0), then the correlation between

the plant species does not decrease significantly from its maximum close to D = 1

(Fig. 8.8b). However, the solution changes significantly. Instead of occurring in

a patterned configuration with its competitor, the faster dispersing species attains

a spatially uniform state, while the faster growing species (and slower disperser)

remains in a patterned state (Fig. 8.8a).
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Figure 8.8: Plant dispersal influences spa-
tial species distribution and enables coex-
istence of a spatially uniform fast disperser
with a patterned slow disperser. The spa-
tial correlation between plant species is shown
in (b) and some example solutions are displayed
in (a). Note that the spatial correlation peaks
close to D = 1 but does not reach unity due
to the plant species differing in other paramet-
ers. No other parameters have any qualitative
impact on correlation. In particular, species cor-
relation is unaffected by changes in the strengths
of local intraspecific competition, which are set
to k1 = k2 = 10 for visualisation purposes. For
D > 1, coexistence of the locally superior spe-
cies (which also disperses faster) in a spatially
uniform state with a patterned state of the su-
perior coloniser (but slower disperser) is possible.
The species difference is set to χ = 0.3 and the
wavelength L is fixed to L = 25 in the numer-
ical continuation with the uphill migration speed
allowed to vary.
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8.5 Discussion

The inclusion of local intraspecific competition dynamics in the modelling framework

of the Klausmeier model for dryland vegetation patterns has a significant impact on

the model solutions. In the context of the single-species model (8.1), only consid-

ering intraspecific competition for water that acts on a long spatial scale leads to

an overestimation of the precipitation range in which patterns occur, while in the

multispecies model (8.4), local intraspecific competition is a key ingredient in the

successful capture of species coexistence in a solution type that represents patterned

vegetation.

In the single-species Klausmeier model, the rate of plant growth grows without

bound as the plant density increases [99]. One possible motivation for this simplistic

description is the type of ecosystem the modelling framework is describing. Dry-

land vegetation is limited by the low volumes of precipitation in arid ecosystems

and thus total biomass is commonly low. Thus, intraspecific competition among

plants is generally only associated with long-range competition for water and any

negative density-dependent effects on the rate of plant growth caused by local in-

traspecific competition are neglected in the Klausmeier model and similar modelling

frameworks [86, 99, 163]. However, even though total biomass on the ecosystem-

wide scale is low, the spatial self-organisation of plants leads to the occurrence of

localised patches in which biomass is high, thus raising a potential issue for the

assumption to neglect local intraspecific competition.

Indeed, model solutions of the Klausmeier model and its extensions typically

undergo several wavelength changes in their transition from a uniformly vegetated

state to a desert state along the precipitation gradient. Towards the lower end

of the rainfall range supporting stable patterns, the solutions’ wavelength become

large and biomass may locally increase to biologically unrealistic levels [20]. The

consideration of local intraspecific competition dynamics in the single-species model

(8.1) presented in this chapter does not allow for such solutions due to the existence

of an upper bound, the maximum standing biomass, on the plant density at every

space point. As a consequence, the patterned state loses stability (and existence)

to the desert equilibrium at higher precipitation volumes than in the model without

local intraspecific competition (Fig. 8.1). Hence, it can be concluded that models

that only consider intraspecific competition for water overestimate the resilience of

vegetation patterns to increasing aridity and that an understanding of intraspecific

competition dynamics is essential to make predictions on desertification processes

in ecosystems.

A characteristic feature of banded vegetation is the uphill migration of veget-

ation stripes [48]. Model solutions of the Klausmeier model consistently predict a
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Figure 8.9: Large species difference inhibits coexistence onset from desert.
Grass density u1 and tree density u2 of a model solution of (8.4) are shown in the
(t, x) under increasing precipitation volume A. Initially, both biomass densities are
set to zero, apart from a region in the centre of the domain. The tree species becomes
extinct and onset of a single-species grass pattern occurs. Onset of a coexistence
pattern is only possible after a reintroduction of species u2 at t = 1000, following
a sufficient increase in precipitation A. A further increase in A causes a transition
from the single-species grass pattern to a spatially uniform single-species state, but
the coexistence pattern eventually invades. The parameter values are consistent
with the bifurcation diagram shown in Fig. 8.7b.
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reduction in uphill migration speed before a destabilisation due to increasing arid-

ity occurs [20, 188], a property that can be used for early detection of degradation

processes. While the introduction of local intraspecific competition to the single-

species Klausmeier model decreases the size of the rainfall range supporting stable

patterns, it stabilises patterned solutions with slower uphill migration speeds (Fig.

8.1). This further emphasises the importance of taking local intraspecific competi-

tion dynamics into account when developing methods of predicting future ecosystem

developments, as they have a significant impact on ecologically important properties

of model solutions.

The impact of local intraspecific competition in the framework of the multispecies

model (8.4) is even more significant, because it stabilises species coexistence in

both a spatially uniform state and in a state representing vegetation patterns (i.e.

oscillations between a high level of biomass and zero). In the absence of local

intraspecific competition dynamics, species coexistence can only occur in a spatially

nonuniform savanna-type state (i.e. oscillations between two nonzero biomass levels)

[64] (Chapter 6). The main mechanism that enables coexistence in both (8.4) and

the model neglecting local intraspecific competition is the spatial self-organisation

of vegetation, which causes heterogeneities in the environmental conditions and thus

gives rise to the existence of two behavioural niches (e.g. [240]); that of colonisation

and that of local superiority. In other words, coexistence is possible if the species

which is locally inferior is superior in its colonisation abilities. The latter allows the

species to utilise the spatial heterogeneities in the resource availability to colonise

new ground, before eventually being outcompeted locally by a second species [64]

(Chapter 6). With intraspecific competition dynamics restricted to competition for

water, such a balance is only maintained for relatively high volumes of precipitation,

thus giving rise to the savanna-type model solution. As precipitation decreases, the

coexistence state loses its stability to a single-species state of the coloniser species,

as the beneficial effects of the coloniser’s ability to self-organise itself into patterns

tips the balance in its favour [64] (Chapter 6). If local intraspecific competition

of the coloniser species is sufficiently strong, however, its advantages due to its

self-organisation abilities decline as the maximum density in single plant patches

declines. This stabilises the coexistence state at lower rainfall volumes at which it

represents a vegetation pattern state (Fig. 8.6). This stabilisation of coexistence

is related to classical results from nonspatial Lotka-Volterra competition models

which state that coexistence is possible if intraspecific competition among all species

is stronger than interspecific competition between them (e.g. [30]). The crucial

difference is that due to the spatial self-organisation in the system, strong local

intraspecific competition of one species only suffices to explain species coexistence

[60] (Chapter 7).
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Variations in the strength of local intraspecific competition of both species fur-

ther have an impact on the system’s bifurcation structure, and in particular on

the onset of patterns. Decreases in local intraspecific competition strength cause a

transition of the pattern onset mechanism at high precipitation levels from a Hopf

bifurcation of the spatially uniform coexistence equilibrium to a stability change

of a single-species pattern to the introduction of a second species (Fig. 8.4b and

8.4c). As a consequence, model results predict that under weak local intraspecific

competition no transition from a spatially uniform coexistence state to a patterned

state can occur. Instead, one species’ biomass decreases to zero as aridity increases,

causing a transition to a spatially uniform single-species state. Only a reintroduc-

tion of the extinct species after a further decrease in precipitation can result in a

patterned coexistence state.

The mechanism causing onset of coexistence patterns at the lower end of the pre-

cipitation range supporting their existence mainly depends on the difference between

both species. If species are sufficiently similar, onset occurs at a homoclinic solution,

while otherwise onset occurs due to a stability change of a single-species pattern to

the introduction of a competitor (Fig. 8.7). This has significant ecological con-

sequences as this predicts that the introduction of two significantly differing species

into a desert state under sufficiently high precipitation volumes will not result in a

successful invasion of the coexistence state. Instead, one species will become extinct

and only a single-species pattern will prevail (Fig. 8.9). A transition to a coexistence

state only becomes possible after a further increase in rainfall and a reintroduction

of the second species. This, combined with the insights into ecosystem resilience

presented above, highlights that mathematical modelling can be a powerful aid for

the development of conservation programs in drylands.

The various hypotheses proposed by both (8.4) and (8.1) could be tested using

empirical data. However, the acquisition of data from vegetation patterns that

are of sufficiently high quality and quantity is a significant challenge yet to be

addressed by ecologists. Exceptions, for example on the uphill migration speed of

vegetation stripes in various sites worldwide, exist [48] but in isolation such datasets

are not sufficient to provide empirical tests for the models presented in this chapter.

Methods for data collection (in particular image processing) are expected to improve

and thus such tests may become possible in the future.

While the modelling framework presented in this chapter leads to the success-

ful capture of species coexistence in banded vegetation patterns, its counterpart

neglecting local intraspecific competition dynamics only captures one out of many

different types of savanna states [176]. Indeed, a comprehensive analysis of species

correlation in coexistence solutions throughout the whole parameter space shows

that both species’ biomass densities are always approximately in phase (Fig. 8.8a).
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An exception occurs if the species with lower biomass yield per unit water consumed

disperses significantly faster than its competitor. In this case, that species attains

a spatially uniform solution but its competitor species remains in a spatial pattern.

This is reminiscent of a different common savanna state: isolated clusters of trees

within grasslands [174]. However, under the assumptions taken in the modelling

framework presented in this chapter, my analysis predicts that such a state is only

attained if woody species are superior in their water-to-biomass conversion abilities

(F > 1). Parameter estimates for dryland vegetation predict that grasses can con-

vert water into new biomass more efficiently than trees or have a faster growth rate

[1, 99] and I thus argue that the modelling framework presented by (8.4) is unable

to capture such a type of savanna state. Instead, a potential mechanism causing

this kind of coexistence is the competition for a second limiting resource (e.g. light).

Competition for two resources can both prevent competitive exclusion (e.g. [30]) and

cause multistability of single-species equilibria in mathematical frameworks. This

can lead to the occurrence of localised patterns of one species within an otherwise

uniform state of the second species, representing isolated clusters of trees within

grasslands [103].

The local intraspecific competition dynamics among plant species are incorpor-

ated into the modelling framework in a general way by combining them into one

single variable, the maximum standing biomass, for each species. The significant

impact of strong local intraspecific competition proposed by the results presented

in this chapter motivates a more detailed investigation of its details in the future.

Promising first steps have been taken through the explicit modelling of toxic soil

compounds produced by plants which inhibit their growth [119]. In the absence

of water scarcity, these dynamics are sufficient to create a pattern-inducing feed-

back and give rise to yet another spatially patterned solution type typically referred

to as a savanna state: spatial segregation of species, i.e. patterns that are anti-

phase. Even though this approach cannot make any statements about coexistence in

water-deprived banded vegetation, it highlights the importance of local intraspecific

competition dynamics. Moreover, it could be the foundation for a more detailed in-

vestigation of their impact on the competition and coexistence dynamics, potentially

resulting in a modelling framework that unifies existing hypothesis on coexistence

in vegetation patterns and savannas and thus allows for better predictions of future

ecosystem dynamics.

The modelling framework presented in this chapter is very general and provides a

deliberately simple description of a self-organisation principle in ecology. Moreover,

results presented in this chapter only depend on basic species properties but do

not rely on any species-specific assumptions. This suggests that results may be

extended to a host of different consumer-resource ecosystems in which coexistence

222



Chapter 8: Intraspecific competition in models for vegetation patterns

of consumer species occurs. Indeed, the significant impact of self-organisation in

such ecosystems has been addressed in recent years through both empirical and

theoretical approaches [32, 37], which emphasise that pattern formation can play a

significant role in species coexistence and suggest more detailed theoretical studies of

the phenomenon in the future to advance our understanding of species coexistence.
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Conclusion

The use of mathematical modelling in the description of dryland vegetation patterns

has thrived over the past three decades [21, 124, 132, 247]. Among a number of dif-

ferent modelling approaches, the Klausmeier reaction-advection-diffusion model [99]

stands out due to its deliberate simplicity, making itself accessible for the application

of powerful tools from mathematical analysis to disentangle the complex ecosystem

dynamics. As a consequence, it provides a promising framework for model exten-

sions to investigate the impact of specific processes, such as various grazing regimes

[68, 195, 197] or autotoxicity [120] on the ecosystem-wide dynamics. The chapters of

this thesis follow this general idea and present extensions of the Klausmeier model to

address the impact of nonlocal seed dispersal (Chapter 2, but also Chapters 3 and 4)

and temporal variability in precipitation regimes (Chapters 3 and 4) on vegetation

patterns and to propose different mechanisms that enable species coexistence under

competition for a sole limiting resource in vegetation patterns and arid savannas

(Chapters 5 to 8).

For simplicity, plant dispersal is commonly described through diffusion in PDE

models for dryland vegetation patterns. However, diffusion is a local process that

neglects any nonlocal mechanisms involved in the dispersal of seeds. As a con-

sequence, empirical evidence does not support this mathematical description and it

is difficult to estimate diffusion coefficients from the available data. By contrast,

comprehensive empirical data on seed dispersal kernels, probability density func-

tions describing the distribution of seed dispersal distances, is available [25]. In

Chapter 2, I investigate the impact of changes to seed dispersal kernels on the onset

of vegetation patterns. A similar approach is also followed in Chapters 3 and 4,

although the main focus of those chapters lies on the impact of temporal variability

in precipitation regimes.

The overreaching conclusion of Chapters 2 to 4 is that longer seed dispersal dis-

tances stabilise uniformly vegetated states for lower precipitation volumes and thus

inhibit the onset of spatial patterns (e.g. Figs. 2.6, 3.4a and 4.6a). Interestingly, em-

pirical studies suggest that plant species in drylands have developed traits, so called

antitelechoric mechanisms, that inhibit long-range dispersal of seeds [66, 227]. As a
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consequence, seed dispersal dynamics in drylands have evolved to be characterised

by narrow seed dispersal kernels. On first glance, this contradicts the modelling

results presented in Chapters 2 to 4 from an evolutionary perspective (assuming

that uniform vegetation cover is an evolutionary beneficial outcome). However, the

development of antitelechoric seed dispersal behaviour is commonly caused by the

evolution of protective mechanisms that enhance seed survival rates and thus (in the

simplified terms of the mathematical models presented in this thesis) reduce plant

mortality [66]. In other words, this suggests an evolutionary trade-off between seed

dispersal distances and plant mortality or plant fecundity. Depending on the exact

form of such a trade-off, modelling results presented in this thesis can indeed explain

this behaviour from an eco-evolutionary perspective (Figs. 2.9 and 3.5).

Results presented in Chapter 2 focus on the onset of spatiotemporal patterns

at high precipitation values, i.e. the transition from a uniformly vegetated state to

a spatially patterned state due to a decrease in rainfall volume. This chapter has

formed the basis of an investigation of pattern existence and pattern stability in the

nonlocal Klausmeier model (2.2) by Bennett and Sherratt [20], utilising numerical

continuation techniques similar to those presented in Section 6.8 of this thesis. In

particular, their analysis shows that the nonlocal Klausmeier model (2.2) presented

in Chapter 2 proposes a potential resolution of the contradicting empirical obser-

vations regarding the uphill movement of banded vegetation patterns. A number

of field studies report an upslope migration [48], while some do not find evidence

of such a behaviour [55]. The inclusion of nonlocal seed dispersal in the modelling

framework of the Klausmeier model shows that the model system captures both

migrating solutions and spatial patterns with negligible uphill migration speed, if

seed dispersal distances are sufficiently large [20]. Thus, this extension of the results

presented in Chapter 2 further highlights the importance of the inclusion of nonlocal

seed dispersal dynamics.

The modelling frameworks presented in Chapters 3 and 4 investigate the im-

pact of temporal variability in precipitation on the onset of vegetation patterns. In

Chapter 3, I present an integrodifference model that captures a seasonal rainfall

regime in which seed dispersal is assumed to occur either during the dry season or

synchronised with the beginning of the wet season, while in Chapter 4, I utilise an

impulsive model (combination of PDEs with time-discrete maps) to account for in-

termittent rainfall regimes in which pulses of biological processes are caused by short

precipitation events of high intensity. Both these approaches are based on historical

rainfall data that show that rainfall in drylands occurs intermittently, seasonally, or

as a combination thereof [148], and therefore provide a more realistic description of

precipitation regimes than PDE models that assume continuous addition of water

at a constant rate. Nevertheless, the deterministic nature of the models presented
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in Chapters 3 and 4 neglects any randomness in precipitation regimes. Indeed, an

appropriate (but still idealised) mathematical description of precipitation in dry-

lands is the use of a Poisson process to model the arrival of rainfall pulses, with

exponentially distributed intensities [167]. However, current modelling frameworks,

including the impulsive model (4.5) presented in Chapter 4, are not suitable to be

equipped with probabilistic rainfall regimes. Solutions would eventually be pushed

onto trajectories leading to plant extinction by the occurrence of time periods dur-

ing which total rainfall volume is significantly below its mean. This causes plant

extinction, because modelling frameworks lack mechanisms that would allow plants

to recover from low biomass densities once environmental conditions improve. In

reality, however, vegetation has developed such features, for example seed banks that

allow seeds to remain dormant below-ground until environmental conditions are fa-

vourable for germination [109]. The inclusion of such energy storage mechanisms

in one of the current modelling frameworks would be an important step towards an

investigation of the impact of probabilistic rainfall regimes on the ecohydrological

dynamics of dryland vegetation and is thus a promising direction of potential future

work.

The mathematical models presented in Chapters 5 to 8 all address the question,

How can species coexist in vegetation patterns despite their competition for a sole

limiting resource? The papers forming Chapters 5 to 8 of this thesis are not the first

to provide partial answers to this question. Previously, Baudena and Rietkerk [16]

and Nathan et al. [145] successfully captured the coexistence of two plant species

in mathematical models for vegetation patterns by assuming that only one species

contributes to the pattern-forming feedback. The pattern forming species acts as an

ecosystem engineer and facilitates a second species which is both the locally superior

species and the faster disperser, but is unable to self-organise into a spatial pattern

itself [145]. Species coexistence in vegetation bands is also captured by Ursino and

Callegaro [27, 220] through the assumption that plant species are adapted to differ-

ent soil moisture niches, resulting in different functional responses of plant growth

to soil moisture. All these approaches are fundamentally based on the assumption

that plant species significantly differ from each other, in particular in their func-

tional responses to the environment. Thus, the crucial novelty of the multispecies

modelling framework presented in Chapters 5 to 8 is that both plant species only

differ in their basic parameter values (e.g. growth rates, mortality rates), but not in

any of their functional responses. Nevertheless, the model successfully captures spe-

cies coexistence in solutions both representing arid savannas (Chapters 5 and 6) and

vegetation patterns (Chapters 5, 7 and 8). The two main conclusions of Chapters 5

to 8 addressing the research question posed above are as follows. Firstly, the spa-

tial self-organisation principle that governs the separation of plants into patches of
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high biomass and patches of bare soil also facilitates species coexistence by creating

a spatially heterogeneous resource landscape, if a balance is kept between species’

colonisation abilities and local competitiveness (Chapters 6 to 8). Secondly, the

results presented in Chapter 5 emphasise that the principle of competitive exclusion

(e.g. [88]) does not necessarily prohibit coexistence, if species are of a similar av-

erage fitness. In this case, coexistence can occur as a long transient. Such a state

is mathematically characterised by a metastable solution, a state originating from

a unstable equilibrium, whose instability is caused by only one small positive eigen-

value. This highlights the importance of considering out-of-equilibrium solutions to

gather a comprehensive understanding of a mathematical model. The only excep-

tion to the assumption of symmetry between both plant species in the multispecies

model is the shading term in (5.4). However, while the shading dynamics enrich the

solution behaviour, its omission does not affect the basic concept of the metastability

property (Chapter 5).

The multispecies models in Chapters 5 to 8 present results for two different

plant types interacting with a limiting resource (water). This is motivated by the

distinction of vegetation into two types; one that dominates in the pioneer zones

(annual grasses) and one that forms the thicket cores (perennial grasses, shrubs,

trees) of vegetation bands, rather than into individual species [179]. Nevertheless,

it would be interesting to investigate if the coexistence mechanisms proposed in this

thesis can be extended to theoretical models for more than two vegetation types,

such as (5.2).

Indeed, the metastability property presented in Chapter 5 can be easily extended

to a larger number of species, in particular if shading effects are neglected. This

coexistence mechanism only depends on the local average fitness of each species,

which, in the simplified setting of the dimensional model (5.2) is defined to be the

ratio of a plant species’ water to biomass conversion rate to its mortality rate. As

such, its computation is not affected by the number of other species in the system.

The analytical derivation of growth rates of perturbations to equilibria (Sections 5.5

and 5.6) becomes infeasible if a higher dimensional model is considered, but can

be replaced by numerical calculations of matrix eigenvalues. This suggests that the

metastability property can be extended to an arbitrary number of species. In other

words, metastable solutions of (5.2) containing an arbitrary number of species can

occur, provided all species are of similar average fitness.

An extrapolation of the coexistence mechanism proposed in Chapters 6 to 8

appears to be less straightforward. The mechanism relies on the interactions of a

species superior in its colonisation abilities with a species that is locally superior. It

is not immediately clear from the results presented in Chapters 6 to 8 how this can be

extended if a third (or more) species are considered in the dynamics. Nevertheless,
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the same mathematical techniques could be utilised to investigate coexistence in

models of more than two plant species. For example, the method to determine the

bifurcation leading to the onset of two-species coexistence patterns from a single-

species pattern in the two-species model (Fig. 6.2) could also be used to screen the

parameter space for the onset of a three-species pattern in a three-species model.

Identically to the method presented in Chapter 6, this would involve a comparison

between the spectra of the same two-species pattern in the two-species model and the

three-species model. While I hypothesise that a further bifurcation can be found

using this method, I am not able to make any predictions about the properties

of the solution branch originating from such a bifurcation. It is neither clear if

this solution features all three species or if one species is replaced by the newly

introduced vegetation type, nor can any statements regarding pattern stability be

made. Thus, a significant amount of work with associated challenges (e.g. increased

computational cost) would be needed to verify if results of Chapters 6 to 8 can be

extended to systems with more than two plant types.

The results presented in Chapters 6 to 8 also highlight the importance of the

plant types’ dispersal behaviours on the coexistence mechanism. In the multispecies

models used in Chapters 6 to 8, plant dispersal is modelled through diffusion. By

contrast, results presented in Chapter 2 (and the extension by Bennett and Sherratt

[20]) emphasise the importance of considering nonlocal plant dispersal in models for

vegetation patterns. Thus, a natural question arises that may feature in a further

extension of the theory: how does nonlocal plant dispersal affect species coexistence?

Nonlocal dispersal was previously included in a multispecies model by Baudena and

Rietkerk [16] without an attempt to investigate its impact. Such an extension would

create the significant challenge of adapting the numerical continuation procedures to

perform a bifurcation analysis. Numerical continuation using AUTO-07p cannot be

applied to models with nonlocal terms. Instead, such systems need to be rewritten as

local models. For the Laplace kernel, this can be done by introducing a new variable

representing the nonlocal convolution term and differentiating twice in space [20, 22,

77, 128]. The only option for other kernel functions is a discretisation of the domain,

incurring a significant computational cost [20].

A final area of potential extensions of all topics presented in this thesis is the con-

sideration of a two-dimensional spatial domain. The restriction to a one-dimensional

spatial domain in the models presented in this thesis is motivated by the original

formulation of the Klausmeier model, solutions of which represent a transversal cut

orthogonal to the terrain contours through regular banded vegetation [99]. Neverthe-

less, an analysis on an ecologically more realistic, two-dimensional spatial domain

could provide more insights into the models’ solution structures and the impact

of the considered processes. On flat terrain in particular, vegetation patterns can
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occur as gap patterns, labyrinth patterns or spot patterns, depending on the hy-

drological conditions [129]. It is of crucial importance to understand the dynamics

of phase transitions between those different pattern types to gain more information

on desertification and other degradation processes in drylands. Even in models de-

scribing the ecohydrological processes on sloped terrain, the inclusion of a second

space dimension can yield valuable new information on the ecosystem dynamics.

For example, Siero et al. [196] have shown that the restriction to a one-dimensional

spatial domain in the Klausmeier model leads to an overestimation of the size of

the precipitation interval in which striped patterns are stable. Similar dynamics

are assumed to occur in the models presented in this thesis and therefore suggest

to extend spatial domains in future analyses of mathematical models of vegetation

patterns.

The long-term goal of the study of dryland vegetation patterns by both ecolo-

gists and mathematical modellers is the development of predictive frameworks that

provide forecasts of future developments of such ecosystems, in particular to com-

bat the threat of irreversible desertification processes. A basic ingredient for this

is the understanding of the effects of basic ecological mechanisms on the ecosystem

dynamics. The chapters presented in this thesis provide examples of theoretical

investigations into the impact of such processes. The mathematical models used

are phenomenological and consequently only provide qualitative insights into the

ecohydrological dynamics. A key future step to enhance our knowledge of vegeta-

tion patterns would be to unify phenomenological modelling work with data-driven

approaches. Promising first steps include the inference of a pattern’s history from

the relation between its wavelength and the terrain’s slope [193], the confirmation of

the occurrence of multistability (i.e. the existence of several stable patterned states)

predicted by models through empirical data [10] and the establishment of a relation

between arcing of vegetation stripes and terrain curvature [72]. Nevertheless, key

challenges, such as the modelling of water redistribution during rainfall events or

the development of more accurate precipitation forecasts, remain to be addressed

before the long-term goal of predicting future ecosystem developments in drylands

can be achieved.
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