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Range expansion

Range expansion refers to the spread of a
population into previously unoccupied habitats.
Occurs in early evolutionary history of species,
but is also induced by climate change because
habitable environments shift polewards (or to
higher altitudes).
Examples include ecological invasions, spread
of epidemics, human migration, growth of
microbial populations, ...

Range expansion of Carolina
chickadee (Poecile carolinensis)1

1McQuillan, M. A. and Rice, A. M.: Ecology and Evolution 5.21 (2015)
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Biofilms

Bacterial biofilms are surface-adhering multicellular
collectives embedded in a self-produced extracellular
matrix.
Biofilms can have both beneficial and detrimental effects
on the surrounding environment.
Example: the soil-dwelling bacterium Bacillus subtilis
forms biofilms on the roots of plants, where some strains
promote the growth of plants.
To fully realise their potential as biocontrol agents,
strains need to be capable of coexisting with (or
outcompeting) other biofilm-forming strains in the
rhizosphere.
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Lukas Eigentler (Warwick) 4



Competition within biofilms

Competition in biofilms is underpinned by kin
discrimination.
Many mechanisms of kin discrimination require spatial
co-location of strains.
Take a step back: need to understand the role of spatial
structure first.
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Colony biofilms

Spatial structure in biofilms is typically studied through the colony biofilm modela:
Genetic drift induces spatial segregation.b

aEigentler, L. et al.: Open Biol. 12.220294 (2022).
bHallatschek, O. et al.: PNAS 104.50 (2007).
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Colony biofilms

Spatial structure in biofilms is typically studied through the colony biofilm modela:
Syntrophic relationships induce dendritic patterns.b

aEigentler, L. et al.: Open Biol. 12.220294 (2022).
bGoldschmidt, F. et al.: The ISME Journal 11.9 (2017).

Lukas Eigentler (Warwick) 6



Colony biofilms

Spatial structure in biofilms is typically studied through the colony biofilm modela:
Reduction in initial population density induces spatial segregation.b

decreasing initial population density

aEigentler, L. et al.: Open Biol. 12.220294 (2022).
bvan Gestel, J. et al.: ISME J. 8.10 (2014).
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Competition within biofilms

Questions: How does spatial structure arise in biofilms
with low initial population density and how does it affect
competitive interactions?
Spatial structure is best studied using isogenic strains:
all other competitive mechanisms (e.g. kin
discrimination) are excluded from the model system by
design.
⇒ Then extend to strain combinations with antagonistic
interactions.
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Methods

Experimental assay:

3610/6153 gfp at OD
600

 1

3610/6153 mTagBFP at OD
600

 1

1:1

Mixed at OD
600

 1 Mixed at OD
600

 10-7Mixed at OD
600

 10-1

dilution dilutiondilution ...

??? ??? ???

incubation

Tested for
B. subtilis NCIB3610 (“standard” lab strain).
B. subtilis NRS6153 (isolated from garden soil in Tayport, Fife, UK).
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Methods

Mathematical model for isogenic strain pair:

∂B1

∂t
= ∇ · ((1 − (B1 + B2))∇B1) + B1 (1 − (B1 + B2)) ,

∂B2

∂t
= ∇ · ((1 − (B1 + B2))∇B2) + B2 (1 − (B1 + B2)) .

Circular domain Ω = {x ∈ R2 : ∥x∥ ≤ R}.
Logistic growth
Diffusion with density-dependent diffusion coefficient,
motivated by experimental observation that initially
separated colonies abut rather than merge2.

2Matoz-Fernandez, D. et al.: Soft Matter 16.13 (2020)
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Initial conditions

What are appropriate initial conditions?
In experiments, cells settle at random locations
within the initial spot and grow to small
micro-colonies.
In the model, we position initial “cell patches”
at random locations in the domain centre
Ω0 = {x ∈ R2 : ∥x∥ ≤ R0} ⊂ Ω.
Each model patch represents 1 microcolony ⇒
tool to modulate founder density.
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Variability in competitive outcome

High founder density: no spatial
structure and initial strain ratio
consistently determines competitive
outcome.
Low founder density: spatial
segregation occurs. Large variability in
competitive outcome for fixed initial
strain ratio.
Founder density significantly affects
phenotype and variability in
competitive outcome.

low founder density high founder density

Experiment ExperimentMath. model Math. model

Lukas Eigentler (Warwick) 11



Variability in competitive outcome

Founder density significantly affects phenotype and
variability in competitive outcome.
Variability increases with decreasing founder density.
Note the computational power of the mathematical
model: 1000 model simulations each vs 12 technical
replicates each of experimental assay.
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Disentangling variability

Hypothesis: only initial patches that
can drive the biofilm’s radial expansion
contribute to outcome density.
We define a quantity that, based on
the initial cell locations, measures a
strain’s “access to free space”

d

d
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Disentangling variability

Hypothesis: only initial patches that
can drive the biofilm’s radial expansion
contribute to outcome density.
We define a quantity that, based on
the initial cell locations, measures a
strain’s “access to free space”
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Access to free space predicts outcome

Access to free space determines
competitive outcome in the absence of
any other competitive dynamics
(isogenic strains).

low founder density
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Access to free space predicts outcome

Access to free space determines
competitive outcome in the absence of
any other competitive dynamics
(isogenic strains).
Slope of relation between access to
free space and competitive outcome
depends on founder density.

high founder density
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Non-isogenic strains

Do these results also hold if strains are non-isogenic and interact through local
antagonisms?

∂B1

∂t
= ∇ ·

((
1 − B1 + B2

k

)
∇B1

)
+B1

(
1 − B1 + B2

k

)
− B1B2,

∂B2

∂t
= ∇ ·

(
d

(
1 − B1 + B2

k

)
∇B2

)
+rB2

(
1 − B1 + B2

k

)
− cB2B1.

Nondimensional model, i.e. d , r , c are ratios of corresponding dimensional parameters.
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Non-isogenic strains

High founder density: competitive
exclusion.
Low founder density: spatial
segregation enables coexistence.
Decreases in founder density cause (i)
increased variability in competitive
outcome, (ii) higher (on average)
densities of weaker strain.

10
0

10
1

10
2

10
3

0

0.5

1

 low founder density high founder density 

Experiment ExperimentMath. model Math. model

Lukas Eigentler (Warwick) 18



Access to free space predicts outcome

Access to free space remains a reliable predictor of
competitive outcome for low founder densities.
Competition for space is the dominant mode of
interaction for low founder densities.
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Impact of spatial heterogeneity

Q: What if environmental conditions are spatially heterogeneous?

∂B1

∂t
= ∇ ·

(
d1(x)

(
1 − B1 + B2

k

)
∇B1

)
+ r1(x)B1

(
1 − B1 + B2

k

)
− c12B1B2,

∂B2

∂t
= ∇ ·

(
d2(x)

(
1 − B1 + B2

k

)
∇B2

)
+ r2(x)B2

(
1 − B1 + B2

k

)
− c21B1B2.
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Impact of spatial heterogeneity

Q: What if environmental conditions are spatially heterogeneous?

A: Spatial heterogeneity adds more variability ⇒ Access to free space score cannot make
accurate predictions.
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Impact of spatial heterogeneity

Q: Which source of variability (low founder density or spatial heterogeneous environmental
conditions) dominates?
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A: Low founder density determines variability in competitive outcome but spatial
heterogeneities determine variability in footprint.
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Impact of spatial heterogeneity

Q: Which source of variability (low founder density or spatial heterogeneous environmental
conditions) dominates?
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A: Low founder density determines variability in competitive outcome but spatial
heterogeneities determine variability in footprint.
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Predictions of competitive outcome in heterogeneous landscapes

Q: Can we still make predictions of competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.
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Predictions of competitive outcome in heterogeneous landscapes

Q: Can we still make predictions for competitive outcome?
A: Yes, using Voronoi tessellations based on an appropriate metric.
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Conclusions

Large variability in competitive outcome occurs for biofilms inoculated at low founder
density, induced by the random positions of founder cells within the inoculum.
Large variability in biofilm footprint occurs in spatially heterogeneous environments.
Competitive outcome can be predicted based on founder cell locations and
information on the spatial environment.
Predictions hold true even if kin discrimination occurs ⇒ “Race for space” is more
important than antagonistic actions at low founder densities.
Impact on applications (e.g. use of B. subtilis as biofertilizer): Competitive success
across all founder densities can only be guaranteed if a strain spreads fast and kills
efficiently.
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Predictions of competitive outcome in heterogeneous landscapes

Q: Can we still make predictions for competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.
Let P(x, y) := {P = p([0, 1]) ⊂ Ω,where p : [0, 1] → Ω : p ∈ C1a.e., p(0) = x, p(1) = y}
be the set of all paths from x to y. For a given path P ∈ P(x, y), the time taken to move
along the path is given by

I (P) :=

∫
P

1
c(x)

ds =

∫ 1

0

1
c(p(τ))

∥p′(τ)∥dτ,

where 0 ≤ c(x) < ∞ represents the propagation speed along the path P . We define the
front propagation metric from x to y as

tFP(x, y) := inf
P∈P(x,y)

I (P).
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Predictions of competitive outcome in heterogeneous landscapes

Q: Can we still make predictions for competitive outcome?
A: Yes, using Voronoi tessellations based on an appropriate metric.
Voronoi tessellation of whole domain:

∆Ω
Bi

:=

{
x ∈ Ω : min

xi∈Bi

tFP(x, xi) ≤ min
xj∈Bj

tFP(x, xj), i ̸= j

}
,

where Bi := {x ∈ {x1, . . . xN} : Bi (x, 0) > 0} , i = 1, 2.
Restrict to area expected to be occupied by time t:

∆Bi
(t) :=

{
x ∈ ∆Ω

Bi
: min

y∈Bi

tFP(x, y) ≤ t

}
, i = 1, 2.

Voronoi index :
Vi (t) :=

Area (∆Bi
(t))

Area (∆B1(t)) + Area (∆B2(t))
, i = 1, 2,
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