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Stripe patterns

Banded vegetation patterns and intertidal mussel beds are classic examples of
self-organisation principles in ecology.

Vegetation stripes in Ethiopia.
Intertidal mussel beds in
the Wadden Sea.

Parallel to topographic contours and shoreline.
Caused by a scale-dependent feedback loop comprising long-range competition for a
limiting resource and short-range facilitation.
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Local facilitation in vegetation patterns

Positive feedback loop: Water infiltration into the soil depends on local plant density ⇒
redistribution of water towards existing plant patches ⇒ further plant growth.
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Klausmeier model for vegetation patterns

One of the most basic phenomenological models for vegetation patterns is the extended
Klausmeier reaction-advection-diffusion model.1

∂u
∂t =

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u
∂x2 ,

∂w
∂t = A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake

by plants

+ ν
∂w
∂x︸ ︷︷ ︸

water flow
downhill

+ d ∂2w
∂x2︸ ︷︷ ︸

water
diffusion

.

1Klausmeier, C. A.: Science 284.5421 (1999).
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Water uptake

Infiltration capacity increases with plant
density2

The nonlinearity in the water uptake and
plant growth terms arises because plants in-
crease the soil’s water infiltration capacity.

⇒Water uptake = Water density x plant
density x infiltration rate.

2Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)
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Sediment accumulation model for mussel beds

A very similar model, the sediment accumulation model describes pattern formation in
intertidal mussel beds4

∂m
∂t =

mussel growth︷ ︸︸ ︷
δam(s + η)

s + 1 −
mussel death︷︸︸︷

m +

mussel dispersal︷ ︸︸ ︷
∂2m
∂x2 ,

∂s
∂t = m︸︷︷︸

sediment build-up

− θs︸︷︷︸
sediment erosion

+ D ∂2s
∂x2︸ ︷︷ ︸

sediment dispersal

,

∂a
∂t = 1 − εa︸ ︷︷ ︸

transport from
upper water layers

− βam(s + η)
s + 1︸ ︷︷ ︸

algae consumption

+ ν
∂a
∂x︸ ︷︷ ︸

algae flow
with tide

.

4Liu, Q.-X. et al.: Proc. R. Soc. Lond. B. 279.1739 (2012).
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Periodic travelling waves
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Model represents vegetation patterns as periodic travelling waves (PTWs).
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Uphill movement in ecology

Timeseries data.5 Uphill migration due to water gradient.6

Data shows that vegetation stripes can move uphill (< 1m per year).
No data on mussel band movement due to destruction during winter storms.

5Gandhi, P. et al.: Dryland ecohydrology. Springer International Publishing, 2019, pp. 469–509.
6Dunkerley, D.: Desert 23.2 (2018).
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Periodic travelling waves
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Model represents vegetation patterns as periodic travelling waves (PTWs).
Along rainfall gradient, transition from uniform vegetation to desert occurs via
several pattern transitions.
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Wavelength changes

State-of-the-art: predict wavelength
changes through PTW stability properties.
PTW linear stability is determined by their
essential spectra.
Calculated using numerical continuation.a

aRademacher, J. D., Sandstede, B. and Scheel, A.:
Physica D 229.2 (2007).
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Wavelength changes

State-of-the-art: predict wavelength
changes through PTW stability properties.
PTW linear stability is determined by their
essential spectra.
Calculated using numerical continuation.a

Wavelengths changes are typically
predicted through the Busse balloon:
parameter space of stable PTWs.

aRademacher, J. D., Sandstede, B. and Scheel, A.:
Physica D 229.2 (2007).
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Wavelength changes

Wavelengths changes are typically
predicted through the Busse balloon:
parameter space of stable PTWs.
Wavelengths are preserved, provided they
remain stable.
Upon destabilisation a wavelength change
occurs.
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Wavelength changes

alternative video link.
Significant delays between crossing a stability boundary and observing wavelength
changes occur.
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Delays to wavelength changes

t
delay

t
delay

t
delay

Significant delays between crossing a stability boundary and observing wavelength
changes occur.
Order of magnitude differences in delay depending on parameter values.
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Predicting delays
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Predicting delays

Can predict the order of magnitude of the delay through the accumulated maximal
instability7

µ(A(t)) =
∫ t

tstab
µ(τ)dτ, t ≥ tstab.

tstab is the time of the
last crossing of the stability
boundary.
µ(t) is the max real part of
the spectrum at time t.

7EL and Sensi, M.: Journal of Theoretical Biology 595 (2024).
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7EL and Sensi, M.: Journal of Theoretical Biology 595 (2024).
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Delay prediction in practice
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Delay prediction in practice
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Delay prediction reset in stable regions
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Conclusions

Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.
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Conclusions

Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.
Order of magnitude of the delay can
be predicted by tracking the
maximum real part of the spectrum
of the destabilised pattern over time.
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Conclusions

Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.
Order of magnitude of the delay can
be predicted by tracking the
maximum real part of the spectrum
of the destabilised pattern over time.
Open question: What new
wavelength is chosen?
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Workshop on pattern formation

Title: Mathematical Modelling of Pattern Formation in
Biological Systems
Date: 15 September 2025
Place: University of Warwick
Cost: Free!

Plenary speakers: Karen Page (UCL), Jonathan Sherratt
(Heriot-Watt), Philip Maini (Oxford)
Abstract submission for contributed talks is open.

More info:
https://lukaseigentler.github.io/pattern-workshop-25
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