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Stripe patterns

Banded vegetation patterns and intertidal mussel beds are classic examples of

self-organisation principles in ecology. Intertidal mussel beds in
the Wadden Sea.

e Caused by a scale-dependent feedback loop comprising long-range competition for a
limiting resource and short-range facilitation.
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Klausmeier model for vegetation patterns

One of the most basic phenomenological models for vegetation patterns is the extended
Klausmeier reaction-advection-diffusion model.!
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'Klausmeier, C. A.:

Science 284.5421 (1999).

Wavelength changes of patterned ecosystems

ER UNIVERSITY
Ol ICK

Lukas Eigentler (University of Warwick,



Klausmeier model for vegetation patterns

One of the most basic phenomenological models for vegetation patterns is the extended
Klausmeier reaction-advection-diffusion model.

plant dispersal

plant growth  pjant loss ~=
ou -0 ~= 0%u
— = u'w — Bu =
ot Ox
ow ow 0’w
— = A - w - Pw + v— + Bl -
ot ~—~ ~— ~—~ Ox Ox

rainfall  evaporation water uptake ~—~—

by plants water flow water

downhill diffusion

Lukas Eigentler (University of Warwick, UK) Wavelength changes of patterned ecosystems



Water uptake
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fraction aerial vegetation coverage

Infiltration capacity increases with plant
density?

’Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)

The nonlinearity in the water uptake and
plant growth terms arises because plants in-
crease the soil's water infiltration capacity.

=Water uptake = Water density x plant
density x infiltration rate.
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Klausmeier model for vegetation patterns

One of the most basic phenomenological models is the extended Klausmeier
reaction-advection-diffusion model.3
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Periodic travelling waves
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e Model represents vegetation patterns as periodic travelling waves (PTWs).
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https://lukaseigentler.github.io/Talks/wavelength_change_video_no_Busse.mp4

Uphill movement in ecology

Timeseries data.* Uphill migration due to water gradient.®

e Data shows that vegetation stripes can move uphill (< 1m per year).

*Gandhi, P. et al.: Dryland ecohydrology. Springer International Publishing, 2019, pp. 469-509.
*Dunkerley, D.: Desert 23.2 (2018).
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Periodic travelling waves
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e Model represents vegetation patterns as periodic travelling waves (PTWs).

e Along rainfall gradient, transition from uniform vegetation to desert occurs via
several pattern transitions.
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Wavelength changes

e State-of-the-art: predict wavelength
changes through PTW stability properties.

e PTW linear stability is determined by their
essential spectra.

e Calculated using numerical continuation.?

?Rademacher, J. D., Sandstede, B. and Scheel, A.:
Physica D 229.2 (2007).
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Wavelength changes

e State-of-the-art: predict wavelength
changes through PTW stability properties.

® PTW linear stability is determined by their
essential spectra.

e Calculated using numerical continuation.?

e Wavelengths changes are typically

predicted through the Busse balloon:
parameter space of stable PTWs.

Migration speed, ¢

Rademacher, J. D., Sandstede, B. and Scheel, A.:
Physica D 229.2 (2007).

Bifurcation parameter, A
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Wavelength changes

e Wavelengths are preserved, provided they
remain stable.

e Upon destabilisation a wavelength change
occurs.
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Wavelength changes
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e Significant delays between crossing a stability boundary and observing wavelength
changes occur.
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https://lukaseigentler.github.io/Talks/wavelength_change_video.mp4

Delays to wavelength changes
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e Significant delays between crossing a stability boundary and observing wavelength

changes occur.
e Order of magnitude differences in delay depending on parameter values.
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Predicting delays

Can predict the order of magnitude of the delay through the accumulated maximal
instability®
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Predicting delays

Can predict the order of magnitude of the delay through the accumulated maximal

instability®
t
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Delay prediction in practice
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Delay prediction in practice
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Delay prediction reset in stable regions

Predicted delay = NaN
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Conclusions

e Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.

Migration speed, ¢

Bifurcation parameter, A
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Conclusions

e Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.

e Order of magnitude of the delay can
be predicted by tracking the
maximum real part of the spectrum
of the destabilised pattern over time.
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Conclusions

e Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.

e Order of magnitude of the delay can
be predicted by tracking the
maximum real part of the spectrum
of the destabilised pattern over time.

Migration speed, ¢
\S]

e Open question: What new
wavelength is chosen?

0 ; APTW4{

Bifurcation parameter, A
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Wavelength changes

e Open question: What new wavelength
is chosen?

e For fixed PDE parameters, there is
multistability of different periodic
travelling waves.

Migration speed, ¢

Bifurcation parameter, A
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Linear analysis insufficient

e Created a large dataset of wavelength

changes through simulations. 400 Hek

o Compared wavelength change .
dynamics with features of essential 5200 kMR
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Some selection data
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What next?

e What (new) methods do we need to understand periodic travelling wave wavelength
selection?

e Similar trends observed for mussel model = is it possible to derive principles
applicable to a wider class of models?

e Do we have empirical evidence of wavelength changes in dryland vegetation
patterns?
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