Slides are available on my website. http://lukaseigentler.github.io

Pattern migration (or not?) of dryland vegetation stripes MODIS, ICMS

15 September 2023

Lukas Eigentler (Universität Bielefeld)

joint work with Jonathan A Sherratt (Heriot-Watt Univ.)

Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology. Stripe pattern in Ethiopia¹. Gap pattern in Niger².

• Plants increase water infiltration into the soil and thus induce a positive feedback loop.

¹Source: Google Maps ²Source: Wikimedia Commons Positive feedback loop: Water infiltration into the soil depends on local plant density \Rightarrow redistribution of water towards existing plant patches \Rightarrow further plant growth.

Positive feedback loop: Water infiltration into the soil depends on local plant density \Rightarrow redistribution of water towards existing plant patches \Rightarrow further plant growth.

Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology. Stripe pattern in Ethiopia³. Gap pattern in Niger⁴.

• On sloped ground, stripes grow parallel to the contours.

³Source: Google Maps ⁴Source: Wikimedia Commons

Vegetation patterns

Timeseries data.⁵

Uphill migration due to water gradient.⁶

• Contrasting field data: stripes either move uphill (< 1m per year) or are stationary⁷.

• No reports of downhill movement.

⁵Gandhi, P. et al.: Dryland ecohydrology. Springer International Publishing, 2019, pp. 469–509.
⁶Dunkerley, D.: Desert 23.2 (2018).
⁷Deblauwe, V. et al.: Ecol. Monogr. 82.1 (2012).

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model. $^{\rm 8}$

⁸Klausmeier, C. A.: *Science* 284.5421 (1999).

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.

Water uptake

Infiltration capacity increases with plant ${\rm density}^9$

The nonlinearity in the water uptake and plant growth terms arises because plants increase the soil's water infiltration capacity.

 \Rightarrow Water uptake = Water density x plant density x infiltration rate.

⁹Rietkerk, M. et al.: *Plant Ecol.* 148.2 (2000)

• How can the contrasting field data on uphill movement be explained?

How does nonlocal seed dispersal affect onset, existence and stability of patterns?
 ⇒ How can the contrasting field data on uphill movement be explained?

The Klausmeier model models plant dispersal by a diffusion term, i.e. a local process.

Nonlocal seed dispersal

More realistic: Include effects of nonlocal processes, such as dispersal by wind or large mammals.

Data of long range seed dispersal ¹⁰

¹⁰Bullock, J. M. et al.: J. Ecol. 105.1 (2017)

Lukas Eigentler (Universität Bielefeld)

Diffusion is replaced by a convolution of the plant density u with a dispersal kernel ϕ . The scale parameter a controls the width of the kernel.

0.4

Laplacian kernel

If ϕ decays exponentially as $|x| \to \infty$, and $C = 2/\sigma(a)^2$, then the nonlocal model tends to the local model as $\sigma(a) \to 0$. E.g. Laplace kernel

$$\phi(x)=rac{a}{2}e^{-a|x|},\quad a>0,\quad x\in\mathbb{R}.$$

Useful because

$$\widehat{\phi}(k) = rac{a^2}{a^2 + k^2}, \quad k \in \mathbb{R}.$$

and allows transformation into a local model. If $v(x, t) = \phi(\cdot; a) * u(\cdot; t)$, then

$$\frac{\partial^2 v}{\partial x^2}(x,t) = a^2(v(x,t) - u(x,t))$$

Travelling waves

- Numerical simulations of the model on sloped terrain suggest uphill movement ⇒ Periodic travelling waves.
- Patterns correspond to limit cycles of the travelling wave integro-ODEs.

Numerical simulation.

Travelling waves

- Numerical simulations of the model on sloped terrain suggest uphill movement ⇒ Periodic travelling waves.
- Patterns correspond to limit cycles of the travelling wave integro-ODEs.
- Numerical continuation shows that patterns emanate from a Hopf bifurcation and terminate at a homoclinic orbit.
- In the PDE model, pattern onset occurs at a threshold
 A = A_{max}, the maximum rainfall level of the Hopf bifurcation loci in the travelling wave ODEs.

Location of the Hopf bifurcation in *A*-*c* plane.

Using that $\nu \gg 1$,

$$A_{\max} = \left(\frac{3C - B - 2\sqrt{2C}\sqrt{C - B}}{(B + C)^2}\right)^{\frac{1}{4}} a^{\frac{1}{2}}B^{\frac{5}{4}}\nu^{\frac{1}{2}},$$

to leading order in ν as $\nu \to \infty$.

- Note that $A_{\max} = O(\sqrt{\nu})$.
- Decrease in *a* (i.e. increase in kernel width) causes decrease of *A*_{max}.
- Increase in dispersal rate *C* causes decrease of A_{\max} .

¹¹EL and Sherratt, J. A.: J. Math. Biol. 77.3 (2018)

Locus of Hopf bifurcation for fixed C and varying a.¹¹

Pattern stability

- The essential spectrum of a periodic travelling wave determines the behaviour of small perturbations. ⇒ Tool to determine pattern stability.
- Two different types stability boundaries: Eckhaus-type and Hopf-type.
- Essential spectra and stability boundaries are calculated using the numerical continuation method by Rademacher et al.¹²

¹²Rademacher, J. D., Sandstede, B. and Scheel, A.: *Physica D* 229.2 (2007)

Pattern existence and stability

Stability of patterns in the A-c plane.¹³

For wide kernels, the stability boundary towards the desert state changes from Eckhaus to Hopf-type. This yields

• increased resilience due to oscillating vegetation densities in peaks,

¹³Bennett, J. J. R. and Sherratt, J. A.: *J. Theor. Biol.* 481 (2018)

Pattern existence and stability

¹⁴Bennett, J. J. R. and Sherratt, J. A.: *J. Theor. Biol.* 481 (2018)

Lukas Eigentler (Universität Bielefeld)

Pattern existence and stability

Existence of stable (almost) stationary patterns.¹⁵

For wide kernels, the stability boundary towards the desert state changes from Eckhaus (sideband) to Hopf-type. This yields

- increased resilience due to oscillating vegetation densities in peaks,
- existence of stable patterns with small migration speed ($c \ll 1$).

¹⁵Bennett, J. J. R. and Sherratt, J. A.: *J. Theor. Biol.* 481 (2018)

Lukas Eigentler (Universität Bielefeld)

Almost stationary spike patterns

As c decreases, plant density develops a "spike".

Lukas Eigentler (Universität Bielefeld)

Almost stationary spike patterns

Layered structure of spike solution

Lukas Eigentler (Universität Bielefeld)

Almost stationary spike patterns

Existence of almost stationary patterns is confirmed analytically using a singular perturbation theory approach, exploiting $c \ll 1$.

Analytical calculation of (almost) stationary patterns. $^{\rm 16}$

¹⁶EL and Sherratt, J. A.: J Math Biol 86.15 (2023)

• How can the contrasting field data on uphill movement be explained? For long seed dispersal distances moving (uphill) and stationary patterns can occur for the same parameter values.

Almost stationary patters

Q: Why do longer mean dispersal distances slow down pattern migration?

narrow kernel: dispersal-induced plant increase at pattern edge causes transition from basin of attraction of desert state to vegetated state.

Almost stationary patters

- Narrow kernel: dispersal-induced plant increase at pattern edge causes transition from basin of attraction of desert state to vegetated state.
- Wide kernel: less dispersal to stripe edges \rightarrow insufficient to cause transition from basin of attraction of desert state to vegetated state.

- Wider kernels and higher dispersal rates inhibit pattern onset.
- Stability analysis of periodic travelling waves provides ecological insights into pattern dynamics: Long-range seed dispersal increases the resilience of a pattern and stabilises (almost) stationary patterns.
- Numerical simulations (pattern onset) and space discretisation to avoid nonlocality (calculation of essential spectra) show no qualitative differences for other kernel functions.

- Empirical tests of these hypotheses?
- How can a system reach a non-migration state?
- How resilient are non-migration states to environmental change?

Slides are available on my website. http://lukaseigentler.github.io

- [1] Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018), pp. 151–161.
- [2] Eigentler, L. and Sherratt, J. A.: J. Math. Biol. 77 (2018), pp. 739–763.
- [3] Eigentler, L. and Sherratt, J. A.: J. Math. Biol. 86.15 (2023).
- [4] EL and Sherratt, J. A.: J. Math. Biol. 77.3 (2018), pp. 739–763.