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Stripe patterns

Banded vegetation patterns and intertidal mussel beds are classic examples of

self-organisation principles in ecology. Intertidal mussel beds in
the Wadden Sea.

e Caused by a scale-dependent feedback loop comprising long-range competition for a
limiting resource and short-range facilitation.
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Local facilitation in vegetation patterns

Positive feedback loop: Water infiltration into the soil depends on local plant density =
redistribution of water towards existing plant patches = further plant growth.
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Klausmeier model for vegetation patterns

One of the most basic phenomenological models for vegetation patterns is the extended
Klausmeier reaction-advection-diffusion model.!
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'Klausmeier, C. A.: Science 284.5421 (1999).
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Water uptake

The nonlinearity in the water uptake and
plant growth terms arises because plants in-
crease the soil's water infiltration capacity.

0 02 04 06 08 1 =Water uptake = Water density x plant
fraction acrial vegetation coverage density x infiltration rate.

Infiltration capacity increases with plant
density?

’Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)
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Sediment accumulation model for mussel beds

A very similar model, the sediment accumulation model describes pattern formation in
intertidal mussel beds*
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*Liu, Q-X. et al.: Proc. R. Soc. Lond. B. 279.1739 (2012).
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Periodic travelling waves
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e Model represents vegetation patterns as periodic travelling waves (PTWs).
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Uphill movement in ecology

Timeseries data.® Uphill migration due to water gradient.®
g g

e Data shows that vegetation stripes can move uphill (< 1m per year).

e No data on mussel band movement due to destruction during winter storms.

5Gandhi, P. et al.: Dryland ecohydrology. Springer International Publishing, 2019, pp. 469-509.
®Dunkerley, D.: Desert 23.2 (2018).
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Periodic travelling waves
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e Model represents vegetation patterns as periodic travelling waves (PTWs).
e Along rainfall gradient, transition from uniform vegetation to desert occurs via
several pattern transitions.
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Wavelength changes

0.21
e State-of-the-art: predict wavelength 0.1 L
changes through PTW stability properties.
e PTW linear stability is determined by their = ol
essential spectra. <
e Calculated using numerical continuation.?
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?Rademacher, J. D., Sandstede, B. and Scheel, A.:
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Wavelength changes

e State-of-the-art: predict wavelength
changes through PTW stability properties.

® PTW linear stability is determined by their
essential spectra.

e Calculated using numerical continuation.?

e Wavelengths changes are typically

predicted through the Busse balloon:
parameter space of stable PTWs.

Migration speed, ¢

Rademacher, J. D., Sandstede, B. and Scheel, A.:
Physica D 229.2 (2007).

Bifurcation parameter, A
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Wavelength changes

o Wavelengths changes are typically
predicted through the Busse balloon:
parameter space of stable PTWs.

e Wavelengths are preserved, provided they
remain stable.

Migration speed, ¢

e Upon destabilisation a wavelength change
occurs.

Bifurcation parameter, A
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Wavelength changes
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e Significant delays between crossing a stability boundary and observing wavelength
changes occur.
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https://lukaseigentler.github.io/Talks/wavelength_change_video.mp4

Delays to wavelength changes
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e Significant delays between crossing a stability boundary and observing wavelength

changes occur.

e Order of magnitude differences in delay depending on parameter values.
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Predicting delays
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There are clear trends between delay and bifurcation parameter
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Predicting delays
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There are clear trends between delay and bifurcation parameter and delay and max real

part of the spectrum. no predictive power
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Predicting delays

Can predict the order of magnitude of the delay through the accumulated maximal

instability’
t
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"EL and Sensi, M.: Journal of Theoretical Biology 595 (2024). Time, ¢
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Delay prediction in practice
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Delay prediction in practice
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Delay prediction reset in stable regions

Predicted delay = NaN
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Conclusions

e Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.

Migration speed, ¢

Bifurcation parameter, A
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Conclusions
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Conclusions

e Wavelength changes that occur after
crossing a stability boundary are
subject to a delay.

e Order of magnitude of the delay can
be predicted by tracking the
maximum real part of the spectrum
of the destabilised pattern over time.

Migration speed, ¢
\S]

e Open question: What new
wavelength is chosen?

0l Ao

Bifurcation parameter, A
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