University of Dundee

Modelling dryland vegetation patterns: Nonlocal dispersal and species coexistence Applied Analysis, Complex Systems & Dynamics Seminar Graz

12 April 2022

Lukas Eigentler joint work with Jamie JR Bennett (Icahn School of Medicine), Jonathan A Sherratt (Heriot-Watt Univ.)

- Motivation, ecological background & a basic phenomenological mathematical model
- Nonlocal plant (seed) dispersal
 - Pattern onset: Analytic derivation in an asymptotic limit
 - Pattern existence & spectral stability using a numerical continuation method
- Species coexistence
 - Spatial self-organisation as a coexistence mechanism.

Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology. Stripe pattern in Ethiopia¹. Gap pattern in Niger².

• Plants increase water infiltration into the soil and thus induce a positive feedback loop.

¹Source: Google Maps ²Source: Wikimedia Commons

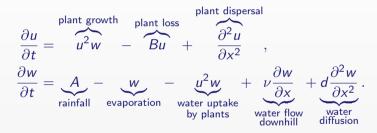
Vegetation patterns

Uphill migration due to water gradient.³

- On sloped ground, stripes grow parallel to the contours.
- Stripes either move uphill or are stationary.
- Species coexistence commonly occurs.

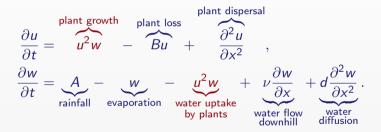
³Dunkerley, D.: *Desert* 23.2 (2018).

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model. $^{\rm 4}$

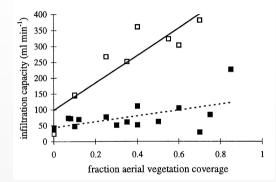


⁴Klausmeier, C. A.: *Science* 284.5421 (1999).

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.



Water uptake



Infiltration capacity increases with plant ${\rm density}^5$

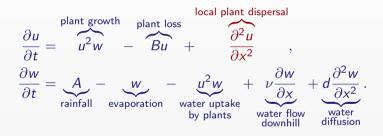
The nonlinearity in the water uptake and plant growth terms arises because plants increase the soil's water infiltration capacity.

 \Rightarrow Water uptake = Water density x plant density x infiltration rate.

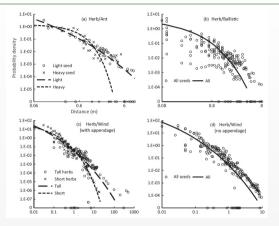
⁵Rietkerk, M. et al.: *Plant Ecol.* 148.2 (2000)

- Motivation, ecological background & a basic phenomenological mathematical model
- Nonlocal plant (seed) dispersal
 - Pattern onset: Analytic derivation in an asymptotic limit
 - Pattern existence & spectral stability using a numerical continuation method
- Species coexistence
 - Spatial self-organisation as a coexistence mechanism.

The Klausmeier model models plant dispersal by a diffusion term, i.e. a local process.



Nonlocal seed dispersal



More realistic: Include effects of nonlocal processes, such as dispersal by wind or large mammals.

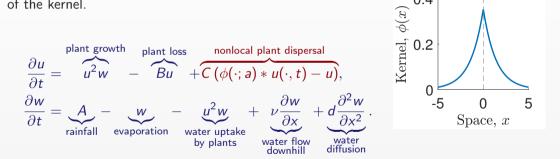
Data of long range seed dispersal ⁶

⁶Bullock, J. M. et al.: J. Ecol. 105.1 (2017)

Lukas Eigentler (Dundee)

Modelling dryland vegetation patterns

Diffusion is replaced by a convolution of the plant density u with a dispersal kernel ϕ . The scale parameter a controls the width of the kernel.



0.4

Laplacian kernel

If ϕ decays exponentially as $|x| \to \infty$, and $C = 2/\sigma(a)^2$, then the nonlocal model tends to the local model as $\sigma(a) \to 0$. E.g. Laplace kernel

$$\phi(x)=rac{a}{2}e^{-a|x|},\quad a>0,\quad x\in\mathbb{R}.$$

Useful because

$$\widehat{\phi}(k) = rac{a^2}{a^2 + k^2}, \quad k \in \mathbb{R}.$$

and allows transformation into a local model. If $v(x, t) = \phi(\cdot; a) * u(\cdot; t)$, then

$$\frac{\partial^2 v}{\partial x^2}(x,t) = a^2(v(x,t) - u(x,t))$$

Travelling waves

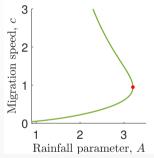
- Numerical simulations of the model on sloped terrain suggest uphill movement ⇒ Periodic travelling waves.
- Patterns correspond to limit cycles of the travelling wave integro-ODEs.



Numverical simulation.

Travelling waves

- Numerical simulations of the model on sloped terrain suggest uphill movement ⇒ Periodic travelling waves.
- Patterns correspond to limit cycles of the travelling wave integro-ODEs.
- Numerical continuation shows that patterns emanate from a Hopf bifurcation and terminate at a homoclinic orbit.
- In the PDE model, pattern onset occurs at a threshold
 A = A_{max}, the maximum rainfall level of the Hopf bifurcation loci in the travelling wave ODEs.



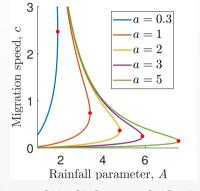
Location of the Hopf bifurcation in A-c plane.

Using that $\nu \gg 1$,

$$A_{\max} = \left(\frac{3C - B - 2\sqrt{2C}\sqrt{C - B}}{(B + C)^2}\right)^{\frac{1}{4}} a^{\frac{1}{2}}B^{\frac{5}{4}}\nu^{\frac{1}{2}},$$

to leading order in ν as $\nu \to \infty.$

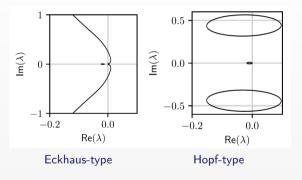
- Note that $A_{\max} = O(\sqrt{\nu})$.
- Decrease in *a* (i.e. increase in kernel width) causes decrease of A_{max}.
- Increase in dispersal rate *C* causes decrease of A_{\max} .



Locus of Hopf bifurcation for fixed C and varying a.

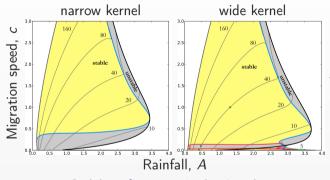
Pattern stability

- The essential spectrum of a periodic travelling wave determines the behaviour of small perturbations. ⇒ Tool to determine pattern stability.
- Two different types stability boundaries: Eckhaus-type and Hopf-type.
- Essential spectra and stability boundaries are calculated using the numerical continuation method by Rademacher et al.⁷



⁷Rademacher, J. D., Sandstede, B. and Scheel, A.: *Physica D* 229.2 (2007)

Pattern existence and stability

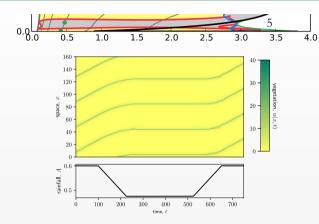


Stability of patterns in the A-c plane.

For wide kernels, the stability boundary towards the desert state changes from Eckhaus to Hopf-type. This yields

 increased resilience due to oscillating vegetation densities in peaks,

Pattern existence and stability



Existence of stable (almost) stationary patterns.

For wide kernels, the stability boundary towards the desert state changes from Eckhaus (sideband) to Hopf-type. This yields

- increased resilience due to oscillating vegetation densities in peaks,
- existence of stable patterns with small migration speed ($c \ll 1$).

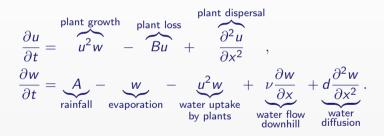
Conclusions I

- The scale difference between plant dispersal and water transport and choice of dispersal kernel allows for an analytical derivation of a condition for pattern onset in an asymptotic limit⁸.
- Wider kernels and higher dispersal rates inhibit pattern onset.
- Stability analysis of periodic travelling waves provides ecological insights into pattern dynamics: Long-range seed dispersal increases the resilience of a pattern and stabilises (almost) stationary patterns⁹.
- Numerical simulations (pattern onset) and space discretisation to avoid nonlocality (calculation of essential spectra) show no qualitative differences for other kernel functions.

⁸EL and Sherratt, J. A.: *J. Math. Biol.* 77.3 (2018).
 ⁹Bennett, J. J. R. and Sherratt, J. A.: *J. Theor. Biol.* 481 (2018).

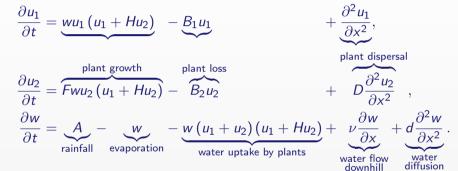
- Motivation, ecological background & a basic phenomenological mathematical model
- Nonlocal plant (seed) dispersal
 - Pattern onset: Analytic derivation in an asymptotic limit
 - Pattern existence & spectral stability using a numerical continuation method
- Species coexistence
 - Spatial self-organisation as a coexistence mechanism.

The one-species extended Klausmeier reaction-advection-diffusion model.



Multispecies Model

Multispecies model:



Species only differ quantitatively (i.e. in parameter values) but not qualitatively (i.e. same functional responses). Assume u_1 is superior coloniser; u_2 is locally superior.

Multispecies Model

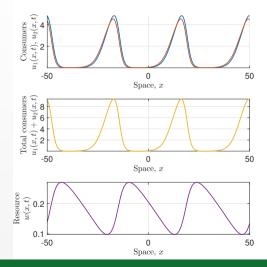
Multispecies model:

$$\frac{\partial u_{1}}{\partial t} = \underbrace{wu_{1}\left(u_{1} + Hu_{2}\right)\left(1 - \frac{u_{1}}{k_{1}}\right)}_{\text{plant growth}} - \underbrace{B_{1}u_{1}}_{\text{plant loss}} + \underbrace{\frac{\partial^{2}u_{1}}{\partial x^{2}}}_{\text{plant dispersal}} + \underbrace{D\frac{\partial^{2}u_{2}}{\partial x^{2}}}_{\text{plant dispersal}},$$

$$\frac{\partial u_{2}}{\partial t} = \underbrace{Fwu_{2}\left(u_{1} + Hu_{2}\right)\left(1 - \frac{u_{2}}{k_{2}}\right)}_{\text{evaporation}} - \underbrace{W\left(u_{1} + u_{2}\right)\left(u_{1} + Hu_{2}\right)}_{\text{water uptake by plants}} + \underbrace{\frac{\partial^{2}u_{1}}{\partial x^{2}}}_{\text{water flow}}, \underbrace{\frac{\partial^{2}w}{\partial x^{2}}}_{\text{water downhill}}.$$

Intraspecific competition is accounted for.

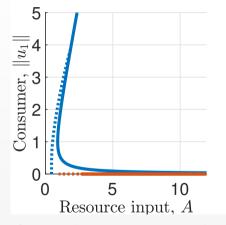
Simulations



- Consumer species coexist in a spatially patterned solution.
- Coexistence requires a balance between species' local average fitness and their colonisation abilities.
- Solutions are periodic travelling waves and move in the direction opposite to the unidirectional resource flux.

Lukas Eigentler (Dundee)

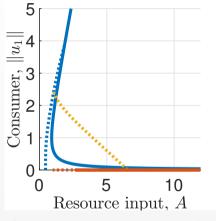
Bifurcation diagram



Bifurcation diagram: one wavespeed only

• The bifurcation structure of single-species states is identical with that of single species model.

Bifurcation diagram

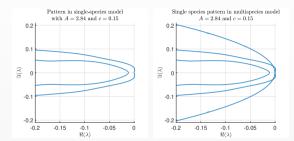


Bifurcation diagram: one wavespeed only

 $\begin{array}{c} -- \text{ uniform } u_1 \\ -- \text{ uniform } u_2 \\ \hline & \text{ single species pattern } u_1 \\ \hline & \text{ single species pattern } u_2 \\ \hline & \text{ coexistence pattern } u_1, u_2 \end{array}$

- The bifurcation structure of single-species states is identical with that of single species model.
- Coexistence pattern solution branch connects single-species pattern solution branches.

Pattern onset

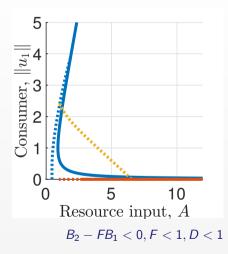


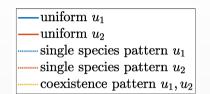
Essential spectrum in single-species model

Essential spectrum in multispecies model

- The key to understand coexistence pattern onset is knowledge of single-species pattern's stability.
- Pattern onset occurs as the single-species pattern loses/gains stability to the introduction of a competitor.

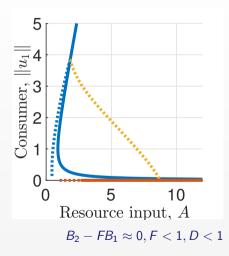
Pattern existence

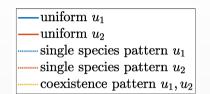




- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence: Balance between local competitive and colonisation abilities.

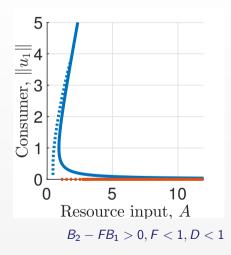
Pattern existence

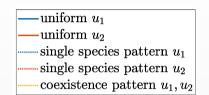




- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence: Balance between local competitive and colonisation abilities.

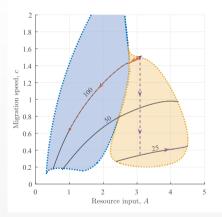
Pattern existence





- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence: Balance between local competitive and colonisation abilities.

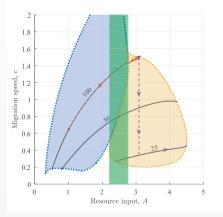
Pattern stability



Stability regions of system states.

- Stability regions of patterned solution can be traced using numerical continuation.
- For decreasing resource input, coexistence state loses stability to single-species pattern of coloniser species.

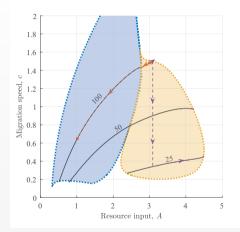
Pattern stability



Stability regions of system states.

- Stability regions of patterned solution can be traced using numerical continuation.
- For decreasing resource input, coexistence state loses stability to single-species pattern of coloniser species.
- Bistability of single-species coloniser pattern and coexistence pattern occurs.

Hysteresis

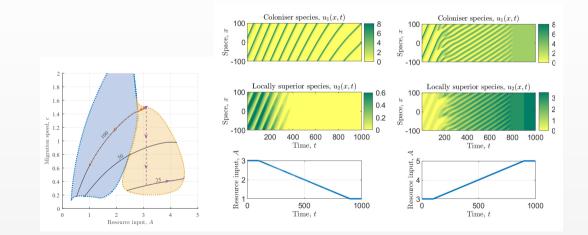


Wavelength contours of stable patterns

- State transitions are affected by hysteresis.
- Extinction can occur despite a coexistence state being stable.
- Ecosystem resilience depends on both current and past states of the system.

Lukas Eigentler (Dundee)

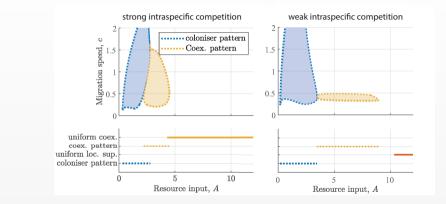
Hysteresis



Lukas Eigentler (Dundee)

Modelling dryland vegetation patterns

Intraspecific competition



Lack of intraspecific competition would lead to (a) non-capture of spatially uniform coexistence; and (b) overestimation of pattern resilience.

Lukas Eigentler (Dundee)

Modelling dryland vegetation patterns

Conclusions II

- Spatial self-organisation is a coexistence mechanism¹⁰.
- Coexistence is enabled by spatial heterogeneities in the resource, caused by the consumers' self-organisation into patterns.
- A balance between species' colonisation abilities and local competitiveness promotes enables coexistence.
- Coexistence may occur as a metastable state if the average fitness difference between species is small¹¹.

¹⁰EL and Sherratt, J. A.: *J. Theor. Biol.* 487 (2020), EL: *Oikos* 130.4 (2021), EL: *Ecol. Complexity* 42 (2020).

¹¹EL and Sherratt, J. A.: *Bull. Math. Biol.* 81.7 (2019).

- How does nonlocal consumer dispersal affect species coexistence?¹²
- Do results extend to an arbitrary number of species?
- How do fluctuations in environmental conditions (in particular resource input) affect coexistence?
- In particular, what are the effects of seasonal¹³, intermittent¹⁴ and probabilistic resource input regimes on both single-species and multispecies states?

¹²EL and Sherratt, J. A.: *J. Math. Biol.* 77.3 (2018).
 ¹³EL and Sherratt, J. A.: *J. Math. Biol.* 81 (2020).
 ¹⁴EL and Sherratt, J. A.: *Physica D* 405 (2020).

Slides are available on my website. http://lukaseigentler.github.io

- [1] Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018), pp. 151–161.
- [2] Eigentler, L.: *Oikos* 130.4 (2021), pp. 609–623.
- [3] Eigentler, L.: Ecol. Complexity 42 (2020), p. 100835.
- [4] Eigentler, L. and Sherratt, J. A.: J. Math. Biol. 77.3 (2018), pp. 739–763.
- [5] Eigentler, L. and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019), pp. 2290–2322.
- [6] Eigentler, L. and Sherratt, J. A.: J. Theor. Biol. 487 (2020), p. 110122.