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Vegetation patterns

Place video here

Vegetation patterns are a classic example

of a self-organisation principle in ecology.

Vegetation band in Austrialia.

e Plants increase water infiltration into the

@ On sloped ground, stripes grow parallel to the contours.
'Dunkerley, D.: Desert 23.2 (2018).
2Source: Google Maps
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Vegetation patterns

Place video here

Transition from vegetation patterns to arid savannas along the precipitation gradient.

Vegetation pattern.® Arid savanna.*

e Both vegetation patterns and arid savannas are characterised by species coexistence.

3Dunkerley, D.: Desert 23.2 (2018).
4Source: Wikimedia Commons
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Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier

reaction-advection-diffusion model.?
plant dispersal

plant growth plant loss
ou S ~ =~ 82u
;= uw — Bu +  —
ot Ix
ow ow 0w
= A -— w _ U2W + = 44 _.
8t ~— ~— ~— aX 8X
rainfall  evaporation  water uptake S~—~—
by plants water flow water
downbhill diffusion

SKlausmeier, C. A.: Science 284.5421 (1999).
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Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier
reaction-advection-diffusion model.
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Water uptake

Place video here

400 -
350
300
250 The nonlinearity in the water uptake and
200 1 plant growth terms arises because plants in-

150 1 crease the soil's water infiltration capacity.

g

infiltration capacity (ml min™)
3
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06 038 1 =Water uptake = Water density x plant
fraction acrial vegetation coverage density x infiltration rate.
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Infiltration capacity increases with plant
density®

®Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)
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Klausmeier Model

The one-species extended Klausmeier reaction-advection-diffusion model.

plant dispersal
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Multispecies Model

Multispecies model based on the extended Klausmeier model.

Place video here

plant plant dispersal
plant growth mortality >
8U1 - N -~ 0 up
—— =wuy (uy + Hup) — By +  ——=
ot ( ) ox2
plant plant dispersal
plant growth mortallty f—"\—\
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ot ( ) ox2 "’
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ot ~ ~ ( 2,( ) Ox Ox?2
rainfa evaporation N~ SN——
water uptake by plants water flow _——

downbhill diffusion

E.g. vy is a grass species; up a tree species. = By < By, F<1 H<1 D < 1.
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Multispecies Model

Place video here

Intraspecific competition may be considered.

plant growth plant plant dispersal
- = mortality f-g\\
ou Uy ~ = 0
— =wnn (i +Hw)(1——]— By + —=
ot ( ) k1 ox2 7
plant growth plant plant dispersal
mortality 5
Ouo up = 0“up
— =Fww (11 + Hw) |1 ——=| — Bu + D——=
ot ( ) ka ox2
ow ow 0w
— = A - w —w(un +w)(tn +Hw)+ v— +d——=.
T R A i) L )
rainfa evaporation
water uptake by plants water flow water
downbhill diffusion

E.g. 1y is a grass species; up a tree species. = B, < B, F<1, H<1, D < 1.
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Place video here

Simulations

<t)t>‘

—— Tree density, us(.

Total plant density, ui(z,t) + ug(x,t) — Water density, w

Grass density, u;(x,t)
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Bifurcation diagram
ITU [ 1ag Place video here

——uniform v

——uniform us

---------- single species pattern u;

---------- single species pattern us
coexistence pattern ui, us

~

e The bifurcation structure of
single-species states is identical with
extended Klausmeier model.

Grass, [|u]|

0 5 10 e Coexistence pattern solution branch

Rainfa”, A connects single-species pattern

. L solution branches.
Bifurcation diagram: one wavespeed only
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Pattern onset
Place video here

B » o e The key to understand coexistence
Pattern in single-species model Single spmles_pfxnez:nm ;nflnsp(‘emes model .
02 with A =2.84 and ¢ = 0.15 02 A =284 and ¢ = 0.15 pattern onset IS knowledge of
single-species pattern’s stability.

e Tool: essential spectra of periodic
D travelling waves, calculated using the
1 o numerical continuation method by
Rademacher et al.”

0.1 0.1

S(N)
o
3(N)
o

-0.20 2 0.15 "0.1 -0.05 0 -0"20.2 0.15 -0.1 0.05 0
e e e Pattern onset occurs as the
Essential spectrum in Essential spectrum in Single_species pattern |ose5/gains
single-species model multispecies model stability to the introduction of a

competitor.

"Rademacher, J. D., Sandstede, B. and Scheel, A.: Physica D 229.2 (2007)
12
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Pattern existence _
Place video here

——uniform wu,

——uniform usy

---------- single species pattern u;

---------- single species pattern us
coexistence pattern ui, us

AN

Key quantity: Local average fitness
difference B> — FB; determines
stability of single-species states in
spatially uniform setting.

Grass, [|ui

0

5 10 e Condition for pattern existence:
Rainfall, A Balance b.etw-een Io.c.aI. competitive
and colonisation abilities.
B, —FB <0,F<1,D<1
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Pattern existence _
Place video here

——uniform usy

---------- single species pattern u;

---------- single species pattern us
coexistence pattern ui, us

/ ——uniform wu,

e Key quantity: Local average fitness
difference B> — FB; determines
stability of single-species states in
spatially uniform setting.

Grass, ||u1

0 Rain?‘all A 10 e Condition for pattern existence:
! Balance between local competitive
B, —FB, ~0,F<1,D<1 and colonisation abilities.
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Pattern existence _
Place video here

——uniform wu,

——uniform usy

---------- single species pattern u;

---------- single species pattern us
coexistence pattern ui, us

e Key quantity: Local average fitness
difference B> — FB; determines
stability of single-species states in

0 5 10 spatially uniform setting.

Rainfall, A e Condition for pattern existence:

By—FB, >0, F<1.D<1 Balance b.etw-een Io.c.aI. competitive

and colonisation abilities.

Grass, ||
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Pattern stability

Place video here

(d) Weak intraspecific competition

among both species

2re e
v : H
T1s5ti e For decreasing rainfall, coexistence
g savanna state loses stability to
.§ 1 single-species grass pattern.
éo.s ‘ e Transition occurs at moderate

T environmental stress = Coexistence
0 only possible in savanna state.
5 10
Rainfall, A

Busse balloons of all pattern types in the system
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Place video here

Effects of intraspecific competition

(b) Strong intraspecific competition ]
, among coloniser species only e Intraspecific competition among
: colonisers stabilise coexistence in
vegetation pattern state.
e Intraspecific competition among
locally superior species enables
spatially uniform coexistence (not

—_
(9]

shown).
e Omission of intraspecific competition
10 leads to overestimation of

0 |
5

Rainfall, A . . (lg

single-species pattern resilience.

Migration speed, ¢

<o
n

Busse balloons of all pattern types in the system
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Effects of intraspecific competition _
Place video here

D =0.001, p = 0.83296

h&/ﬁ\\//}\\//}\ e The model captures the spatial species

50 —Grass, u; — Trees, u2‘50 distribution of grasses and trees in a

=
3 pattern.
£ 4 D =1,p=0.99648 e The faster the coloniser’s dispersal, the
= more pronounced is its presence at the
/oo top edge of each stripe.

0

-50 0 50
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Conclusions _
Place video here

e The basic phenomenological reaction-advection-diffusion system captures species
coexistence as

(i) a stable patterned solution representing a savanna state.
(ii) a stable vegetation pattern state if intraspecific competition among the superior

coloniser is sufficiently strong.
(iii) a metastable state if the average fitness difference between species is small®.

e Coexistence is enabled by spatial heterogeneities in the resource, caused by the
plants’ self-organisation into patterns.

e Stability analyses of spatially uniform solutions and periodic travelling waves (via a
calculation of essential spectra) provide insights into existence and stability of

coexistence states.

8EL and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019).
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Future Work

Place video here

e How does nonlocal seed dispersal affect species coexistence?

e Do results extend to an arbitrary number of species?

e How do fluctuations in environmental conditions (in particular precipitation) affect
coexistence?

e In particular, what are the effects of seasonal®, intermittent!? and probabilistic
rainfall regimes on both single-species and multispecies states?

°EL and Sherratt, J. A.: arXiv:1911.10964 (2019).
10EL and Sherratt, J. A.: Physica D 405 (2020).
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