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Vegetation Patterns

Mitchell grass in Australia

e Lack of water causes self-organisation into patterns.

e On sloped ground, stripes grow parallel to the contours.
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A - rainfall, B - plant loss, d - w. diffusion
Klausmeier Model v - w. flow downhill

Klausmeier reaction-advection-diffusion model.!

plant dispersal
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'Klausmeier, C. A.: Science 284.5421 (1999), pp. 1826-1828.
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A - rainfall, B - plant loss, d - w. diffusion
v - w. flow downbhill

Klausmeier Model

Klausmeier reaction-advection-diffusion model.
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A - rainfall, B - plant loss, d - w. diffusion
Water Uptake v - w. flow downhill

infiltration capacity (ml min™)

0 02 04 0.6 0.8 1
fraction aerial vegetation coverage

Infiltration capacity increases with plant density? = Water uptake = Water
density x plant density x infiltration rate

Rietkerk, M. et al.: Plant Ecol. 148.2 (2000), pp. 207-224.
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A - rainfall, B - plant loss, d - w. diffusion
v - w. flow downbhill

Klausmeier Model

Klausmeier reaction-advection-diffusion model.
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A - rainfall, B - plant loss, d - w. diffusion
v - w. flow downbhill

Local Model

Klausmeier reaction-advection-diffusion model.

local plant dispersal

plant growth plant loss
ou o 92u
—= u'w — Bu + —= ,
ot 9
ow ow Pw
—_ = A — w _ u2W + = 4 d—2 .
ot ~—~ ~~ ~— Ox Ox
rainfall  evaporation  water uptake N~
by plants water flow water
ownbhill diffusion

Effects of Long-Range Dispersal on Patterns in Semi-Arid Vegetatio

Lukas Eigentler (Edinbi



A - rainfall, B - plant loss, d - w. diffusion

Nonlocal Model v - w. flow downhill, 1/a - kernel width
C - dispersal rate

Diffusion is replaced by convolution.

plant growth  plant loss nonlocal plant dispersal
ou > ~ =~
= uw - Bu +C(¢(+;a)*u(-t)—u),
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downbhill diffusion
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A - rainfall, B - plant loss, d - w. diffusion
Laplacian Kernel v - w. flow downhill, 1/a - kernel width
C - dispersal rate

If ¢ decays exponentially as |x| — oo, and C = 2/0(a)?, then the
nonlocal model tends to the local model as o(a) — 0.
E.g. Laplace kernel

o(x) = gef"‘x‘, a>0, xelR

Useful because
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A - rainfall, B - plant loss, d - w. diffusion
Steady States v - w. flow downhill, 1/a - kernel width

C - dispersal rate

Desert steady state,

(0, A) stable.

If A> 2B, there are two additional steady states

( 2B A— VA2 —4B2

A— A2 —4B?’ 2

2B A+ VA2 —4B?
, unstable.
A+ VA2 —4B2 2

) stable if B < 2,
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A - rainfall, B - plant loss, d - w. diffusion

Travelling Waves v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate

e On sloped ground patterns slowly move uphill.

e Travelling wave ansatz u(x, t) = U(z), w(x, t) = W(z),
z = x — ct gives the corresponding travelling waves ODEs

%g:_%uﬂw—su+cw@$*w0—WﬂD7
aw 1
dz  c+v

(A—w—UPw).
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A - rainfall, B - plant loss, d - w. diffusion
Travelling Waves v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate

e Patterns correspond to limit cycles of the travelling wave
integro-ODEs.

e Local model: The parameter region supporting patterns is
bounded above by a Hopf bifurcation in the A-c plane3.

N w

-

Migration speed, ¢

0
1 2 3
Rainfall parameter, A

Location of the Hopf bifurcation in A-c plane.

3Sherratt, J. A. and Lord, G. J.: Theor. Popul. Biol. 71.1 (2007), pp. 1-11
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A - rainfall, B - plant loss, d - w. diffusion
Onset of Patterns v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate

For perturbations U(z), W(z) proportional to e*? of a steady state
(U, W), X satisfies

A4 aX + BN A2+ 6N+ e =0,
A Hopf bifurcation requires A = iw, w € R. This yields

aw* —yw? 4 e =0,
w® — Buwd + dw = 0.

Solving for, and eliminating w? gives

'yi\/m_ﬁi\/m
20 - 2 '

These need to be positive for w € R.
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A - rainfall, B - plant loss, d - w. diffusion
Onset of Patterns v - w. flow downhill, 1/a - kernel width

¢ - migration speed, C - dispersal rate

d(B - C)+ c(c+v)

o =

cd ’
—2B? (a%cd — (B — C)(c + v)) — Ac (A + \/m)
b= 2B2cd ’
~2B2a% (d + c(c +v)) + A(B + C) (A+ VA? —4B?) — 48>
e 2B2%cd ’
2 (—283(c +v)+ Ac (A + m))
0= 2B2cd ’
2 (~A(A+VAT=1B?) +48?)
T 2B2cd ’
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A - rainfall, B - plant loss, d - w. diffusion
Onset of Patterns v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate

Using that v > 1,

1
3C — B—-2V2Cy/C—-B\* .
(B + C)?

sl

B

N[

Amax =

to leading order in v as v — co.

® Decrease in a (i.e. increase in kernel width) causes decrease of
Amax-

e Increase in dispersal rate C causes decrease of Anay.
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A - rainfall, B - plant loss, d - w. diffusion

Onset of Patterns v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate
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Rainfall parameter, A

Locus of Hopf bifurcation for fixed C and varying a.
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A - rainfall, B - plant loss, d - w. diffusion
Other Kernel Functions v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate

Gaussian kernel:

a 2192
p(x) = Le %, xeR,a; >0.

Power law distribution:
(b—1)ap

TR

x€R,a,>0,b>3.
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A - rainfall, B - plant loss, d - w. diffusion
Numerical Simulations v - w. flow downhill, 1/a - kernel width
¢ - migration speed, C - dispersal rate
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changes to kernel width a. changes to the dispersal rate C.
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Conclusions

e Wider kernels and higher dispersal rates inhibit pattern formation.
e But plants develop a narrow dispersal kernel = trade-off.

e Mathematically motivated form of trade-off: C = 2/0(a)?.
Model tends to the local reaction-advection-diffusion system as
o(a) — 0.

e Tendency to form patterns depends on the kind of decay of the
dispersal kernel.
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Extension

e Rainfall events in semi-arid regions are usually short in their
duration but high in their intensity and cause a pulse of biological
processes.

e Combination of continuous-time processes and such pulses can be
described by an impulse-type model: PDEs that are periodically
(in time) updated through integrodifference equations.

e Pulse-type dispersal weakens the effects of the dispersal kernel
but same parametric trends are observed.

e Less frequent pulses reduce tendency to form patterns but
increase water requirements for plants to persist.
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