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Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology.
Vegetation band in Austrialia.1 Stripe pattern in Ethiopia2.

Plants increase water infiltration into the soil and induce a positive feedback loop.
On sloped ground, stripes grow parallel to the contours.

1Dunkerley, D.: Desert 23.2 (2018).
2Source: Google Maps
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Vegetation patterns

Transition from vegetation patterns to arid savannas along the precipitation gradient.
Vegetation pattern.3 Arid savanna.4

Both vegetation patterns and arid savannas are characterised by species coexistence.
3Dunkerley, D.: Desert 23.2 (2018).
4Source: Wikimedia Commons
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A - rainfall, B - plant loss, d - w. diffusion
Klausmeier model ν - w. flow downhill

One of the most basic phenomenological models is the extended Klausmeier
reaction-advection-diffusion model.5
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5Klausmeier, C. A.: Science 284.5421 (1999).
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A - rainfall, B - plant loss, d - w. diffusion
Water uptake ν - w. flow downhill

Infiltration capacity increases with plant
density6

The nonlinearity in the water uptake and
plant growth terms arises because plants in-
crease the soil’s water infiltration capacity.

⇒Water uptake = Water density x plant
density x infiltration rate.

6Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)
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A - rainfall, B - plant loss, d - w. diffusion
Klausmeier Model ν - w. flow downhill

The one-species extended Klausmeier reaction-advection-diffusion model.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Multispecies Model D - plant diffusion ratio, H - infiltration effect ratio

ν - w. flow downhill, d - water diffusion

Multispecies model based on the extended Klausmeier model.
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E.g. u1 is a grass species; u2 a tree species. ⇒ B2 < B1, F < 1, H < 1, D < 1.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Multispecies Model D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion

Intraspecific competition may be considered.

∂u1
∂t

=

plant growth︷ ︸︸ ︷
wu1 (u1 + Hu2)

(
1− u1

k1

)
−

plant
mortality︷︸︸︷
B1u1 +

plant dispersal︷ ︸︸ ︷
∂2u1
∂x2

,

∂u2
∂t

=

plant growth︷ ︸︸ ︷
Fwu2 (u1 + Hu2)

(
1− u2

k2

)
−

plant
mortality︷︸︸︷
B2u2 +

plant dispersal︷ ︸︸ ︷
D
∂2u2
∂x2

,

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

−w (u1 + u2) (u1 + Hu2)︸ ︷︷ ︸
water uptake by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

.

E.g. u1 is a grass species; u2 a tree species. ⇒ B2 < B1, F < 1, H < 1, D < 1.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Simulations D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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stable savanna
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Bifurcation diagram D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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Bifurcation diagram: single-species states only

The bifurcation structure of
single-species states is identical with
extended Klausmeier model.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Bifurcation diagram D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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Bifurcation diagram: complete

The bifurcation structure of
single-species states is identical with
extended Klausmeier model.
Coexistence pattern solution branch
connects single-species pattern
solution branches.

Lukas Eigentler (Edinburgh) Species coexistence in dryland vegetation 12



A - rainfall, Bi - plant loss, F - plant growth ratio,
Pattern onset D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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The key to understand coexistence
pattern onset is knowledge of
single-species pattern’s stability.
Tool: essential spectra of periodic
travelling waves, calculated using the
numerical continuation method by
Rademacher et al.7

Pattern onset occurs as the
single-species pattern loses/gains
stability to the introduction of a
competitor.

7Rademacher, J. D., Sandstede, B. and Scheel, A.: Physica D 229.2 (2007)
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Pattern existence D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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B2 − FB1 < 0,F < 1,D < 1

Key quantity: Local average fitness
difference B2 − FB1 determines
stability of single-species states in
spatially uniform setting.
Condition for pattern existence:
Balance between local competitive
and colonisation abilities.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Pattern existence D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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B2 − FB1 ≈ 0,F < 1,D < 1

Key quantity: Local average fitness
difference B2 − FB1 determines
stability of single-species states in
spatially uniform setting.
Condition for pattern existence:
Balance between local competitive
and colonisation abilities.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Pattern stability D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion

Busse balloons of all pattern types in the system

Pattern dynamics (wavelength,
migration speed) are dominated by
properties of coloniser species.
Busse balloons of coexistence patterns
and single-species tree patterns
overlap ⇒ potentially significant
ecologically (ecosystem engineering).
For decreasing rainfall, coexistence
savanna state loses stability to
single-species grass pattern.
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A - rainfall, Bi - plant loss, F - plant growth ratio,
Effects of intraspecific competition D - plant diffusion ratio, H - infiltration effect ratio

ki - carrying capacities, ν - w. flow downhill, d - water diffusion
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Strong intraspecific competition of the
coloniser species stabilises coexistence
in vegetation patterns.
The model captures the spatial species
distribution of grasses and trees in a
pattern.
The faster the coloniser’s dispersal, the
more pronounced is its presence at the
top edge of each stripe.
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Conclusions

The basic phenomenological reaction-advection-diffusion system captures species
coexistence as
(i) a stable patterned solution representing a savanna state.
(ii) a stable vegetation pattern state if intraspecific competition among the superior

coloniser is sufficiently strong.
(iii) a metastable state if the average fitness difference between species is small8.

Coexistence is enables by spatial heterogeneities in the resource, caused by the
plants’ self-organisation into patterns.
Stability analyses of spatially uniform solutions and periodic travelling waves (via a
calculation of essential spectra) provide insights into existence and stability of
coexistence states.

8Eigentler, L. and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019).
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Future Work

How does nonlocal seed dispersal affect species coexistence?
Do results extend to an arbitrary number of species?
How do fluctuations in environmental conditions (in particular precipitation) affect
coexistence?
In particular, what are the effects of seasonal9, intermittent10 and probabilistic
rainfall regimes on both single-species and multispecies states?

9EL and Sherratt, J. A.: An integrodifference model for vegetation patterns in semi-arid environments
with seasonality (submitted).

10EL and Sherratt, J. A.: Effects of precipitation intermittency on vegetation patterns in semi-arid
landscapes (submitted).
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