

Heriot-Watt University & The University of Edinburgh

Spatial self-organisation enables species coexistence in a model for dryland vegetation DSABNS, February 2020 Slides are available on my website. http://www.macs.hw.ac.uk/~le8/

Lukas Eigentler

joint work with Jonathan A Sherratt (Heriot-Watt Univ.)

Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology. Vegetation band in Austrialia.¹ Stripe pattern in Ethiopia².

- Plants increase water infiltration into the soil and induce a positive feedback loop.
- On sloped ground, stripes grow parallel to the contours.

¹Dunkerley, D.: *Desert* 23.2 (2018). ²Source: Google Maps

Vegetation patterns

Transition from vegetation patterns to arid savannas along the precipitation gradient. Vegetation pattern.³ Arid savanna.⁴

• Both vegetation patterns and arid savannas are characterised by species coexistence.

³Dunkerley, D.: *Desert* 23.2 (2018).

⁴Source: Wikimedia Commons

A - rainfall, B - plant loss, d - w. diffusion $\nu - {\rm w.~flow~downhill}$

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model. $^5\,$

⁵Klausmeier, C. A.: *Science* 284.5421 (1999).

A - rainfall, B - plant loss, d - w. diffusion $\nu - {\rm w.~flow~downhill}$

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.

Water uptake

A - rainfall, B - plant loss, d - w. diffusion $\nu \text{ - w. flow downhill}$

Infiltration capacity increases with plant ${\rm density}^6$

The nonlinearity in the water uptake and plant growth terms arises because plants increase the soil's water infiltration capacity.

 \Rightarrow Water uptake = Water density x plant density x infiltration rate.

⁶Rietkerk, M. et al.: *Plant Ecol.* 148.2 (2000)

A - rainfall, B - plant loss, d - w. diffusion $\nu - {\rm w.~flow~downhill}$

The one-species extended Klausmeier reaction-advection-diffusion model.

Multispecies Model

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio ν - w. flow downhill, d - water diffusion

Multispecies model based on the extended Klausmeier model.

E.g. u_1 is a grass species; u_2 a tree species. $\Rightarrow B_2 < B_1$, F < 1, H < 1, D < 1.

Multispecies Model

A - rainfall, B_i - plant loss, F - plant growth ratio,

D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

Intraspecific competition may be considered.

E.g. u_1 is a grass species; u_2 a tree species. $\Rightarrow B_2 < B_1$, F < 1, H < 1, D < 1.

Simulations

A - rainfall, B_i - plant loss, F - plant growth ratio,

D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

• Coexistence in the model occurs as a stable savanna state.

Lukas Eigentler (Edinburgh)

Bifurcation diagram

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

5 Grass, $||u_1||$ uniform u_1 uniform u_2 single species pattern u_1 single species pattern u_2 coexistence pattern u_1, u_2 The bifurcation structure of 0 single-species states is identical with 5 10 extended Klausmeier model. Rainfall, A

Bifurcation diagram: single-species states only

Bifurcation diagram

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

Bifurcation diagram: complete

- The bifurcation structure of single-species states is identical with extended Klausmeier model.
- Coexistence pattern solution branch connects single-species pattern solution branches.

Pattern onset

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

Essential spectrum in single-species model

Essential spectrum in multispecies model

- The key to understand coexistence pattern onset is knowledge of single-species pattern's stability.
- Tool: essential spectra of periodic travelling waves, calculated using the numerical continuation method by Rademacher et al.⁷
- Pattern onset occurs as the single-species pattern loses/gains stability to the introduction of a competitor.

⁷Rademacher, J. D., Sandstede, B. and Scheel, A.: *Physica D* 229.2 (2007)

Species coexistence in dryland vegetation

Pattern existence

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence: Balance between local competitive and colonisation abilities.

Pattern existence

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

 $B_2 - FB_1 \approx 0, F < 1, D < 1$

- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence: Balance between local competitive and colonisation abilities.

Pattern existence

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence: Balance between local competitive and colonisation abilities.

Pattern stability

A - rainfall, B_i - plant loss, F - plant growth ratio, D - plant diffusion ratio, H - infiltration effect ratio

 k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

- Pattern dynamics (wavelength, migration speed) are dominated by properties of coloniser species.
- Busse balloons of coexistence patterns and single-species tree patterns overlap ⇒ potentially significant ecologically (ecosystem engineering).
- For decreasing rainfall, coexistence savanna state loses stability to single-species grass pattern.

Busse balloons of all pattern types in the system

A - rainfall, B_i - plant loss, F - plant growth ratio, Effects of intraspecific competition D - plant diffusion ratio, H - infiltration effect ratio k_i - carrying capacities, ν - w. flow downhill, d - water diffusion

- Strong intraspecific competition of the coloniser species stabilises coexistence in vegetation patterns.
- The model captures the spatial species distribution of grasses and trees in a pattern.
- The faster the coloniser's dispersal, the more pronounced is its presence at the top edge of each stripe.

Conclusions

- The basic phenomenological reaction-advection-diffusion system captures species coexistence as
 - (i) a stable patterned solution representing a savanna state.
 - (ii) a stable vegetation pattern state if intraspecific competition among the superior coloniser is sufficiently strong.
 - (iii) a metastable state if the average fitness difference between species is small⁸.
- Coexistence is enables by spatial heterogeneities in the resource, caused by the plants' self-organisation into patterns.
- Stability analyses of spatially uniform solutions and periodic travelling waves (via a calculation of essential spectra) provide insights into existence and stability of coexistence states.

⁸Eigentler, L. and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019).

- How does nonlocal seed dispersal affect species coexistence?
- Do results extend to an arbitrary number of species?
- How do fluctuations in environmental conditions (in particular precipitation) affect coexistence?
- In particular, what are the effects of seasonal⁹, intermittent¹⁰ and probabilistic rainfall regimes on both single-species and multispecies states?

⁹EL and Sherratt, J. A.: An integrodifference model for vegetation patterns in semi-arid environments with seasonality (submitted).

¹⁰EL and Sherratt, J. A.: Effects of precipitation intermittency on vegetation patterns in semi-arid landscapes (submitted).

I am currently looking for a postdoc position. Please speak to me if you are aware of any opportunities.

- **Eigentler**, L.: 'Intraspecific competition can generate species coexistence in a model for dryland vegetation patterns'. *bioRxiv preprint* (2020).
- Eigentler, L. and Sherratt, J. A.: 'Metastability as a coexistence mechanism in a model for dryland vegetation patterns'. *Bull. Math. Biol.* 81.7 (2019), pp. 2290–2322.
- **Eigentler**, L. and Sherratt, J. A.: 'Spatial self-organisation enables species coexistence in a model for savanna ecosystems'. *J. Theor. Biol.* 487 (2020), p. 110122.