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Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology.
Stripe pattern in Ethiopia1. Gap pattern in Niger2.

Plants increase water infiltration into the soil and thus induce a positive feedback
loop.

1Source: Google Maps
2Source: Wikimedia Commons
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Vegetation patterns

Uphill migration due to water gradient.3

On sloped ground, stripes grow parallel to the contours.
Stripes either move uphill or are stationary.
Species coexistence commonly occurs.

3Dunkerley, D.: Desert 23.2 (2018).
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Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier
reaction-advection-diffusion model.4

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
,

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake
by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

.

4Klausmeier, C. A.: Science 284.5421 (1999).
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Water uptake

Infiltration capacity increases with plant
density5

The nonlinearity in the water uptake and
plant growth terms arises because plants in-
crease the soil’s water infiltration capacity.

⇒Water uptake = Water density x plant
density x infiltration rate.

5Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)
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Local Model

The Klausmeier model models plant dispersal by a diffusion term, i.e. a local process.

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

local plant dispersal︷︸︸︷
∂2u

∂x2
,

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake
by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

.
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Nonlocal seed dispersal

Data of long range seed dispersal 6

More realistic: Include effects of nonlocal
processes, such as dispersal by wind or large
mammals.

6Bullock, J. M. et al.: J. Ecol. 105.1 (2017)

Lukas Eigentler Dundee Modelling dryland vegetation patterns 10



Nonlocal model

Diffusion is replaced by a convolution of the plant density u with
a dispersal kernel φ. The scale parameter a controls the width
of the kernel.

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

nonlocal plant dispersal︷ ︸︸ ︷
C (φ(·; a) ∗ u(·, t)− u),

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake
by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion
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Laplacian kernel

If φ decays exponentially as |x | → ∞, and C = 2/σ(a)2, then the nonlocal model tends to
the local model as σ(a)→ 0.
E.g. Laplace kernel

φ(x) =
a

2
e−a|x |, a > 0, x ∈ R.

Useful because

φ̂(k) =
a2

a2 + k2
, k ∈ R.

and allows transformation into a local model. If v(x , t) = φ(·; a) ∗ u(·; t), then

∂2v

∂x2
(x , t) = a2(v(x , t)− u(x , t))
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Travelling waves

Numerical simulations of the model on sloped terrain
suggest uphill movement ⇒ Periodic travelling waves.
Numerical continuation shows that patterns emanate from
a Hopf bifurcation and terminate at a homoclinic orbit.
In the PDE model, pattern onset occurs at a threshold
A = Amax, the maximum rainfall level of the Hopf
bifurcation loci in the travelling wave ODEs.

1 2 3

0

1

2

3

Location of the Hopf
bifurcation in A-c plane.
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Pattern onset

Using that ν � 1,

Amax =

(
3C − B − 2

√
2C
√
C − B

(B + C )2

) 1
4

a
1
2B

5
4 ν

1
2 ,

to leading order in ν as ν →∞.
Note that Amax = O(

√
ν).

Decrease in a (i.e. increase in kernel width)
causes decrease of Amax.
Increase in dispersal rate C causes decrease of
Amax.

2 4 6

0
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3

Locus of Hopf bifurcation for fixed C
and varying a.
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Pattern stability

The essential spectrum of a
periodic travelling wave determines
the behaviour of small
perturbations. ⇒ Tool to
determine pattern stability.
Two different types stability
boundaries: Eckhaus-type and
Hopf-type.
Essential spectra and stability
boundaries are calculated using the
numerical continuation method by
Rademacher et al.7

Eckhaus-type Hopf-type

7Rademacher, J. D., Sandstede, B. and Scheel, A.: Physica D 229.2 (2007)
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Pattern existence and stability

Rainfall, A
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narrow kernel wide kernel

Stability of patterns in the A-c plane.

For wide kernels, the stability boundary
towards the desert state changes from
Eckhaus to Hopf-type. This yields

increased resilience due to
oscillating vegetation densities in
peaks,

Lukas Eigentler Dundee Modelling dryland vegetation patterns 16



Pattern existence and stability

Existence of stable (almost) stationary patterns.

For wide kernels, the stability boundary
towards the desert state changes from
Eckhaus (sideband) to Hopf-type. This
yields

increased resilience due to
oscillating vegetation densities in
peaks,
existence of stable patterns with
small migration speed (c � 1).
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Conclusions I

The scale difference between plant dispersal and water transport and choice of
dispersal kernel allows for an analytical derivation of a condition for pattern onset in
an asymptotic limit8.
Wider kernels and higher dispersal rates inhibit pattern onset.
Stability analysis of periodic travelling waves provides ecological insights into pattern
dynamics: Long-range seed dispersal increases the resilience of a pattern and
stabilises (almost) stationary patterns9.
Numerical simulations (pattern onset) and space discretisation to avoid nonlocality
(calculation of essential spectra) show no qualitative differences for other kernel
functions.

8EL and Sherratt, J. A.: J. Math. Biol. 77.3 (2018).
9Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018).

Lukas Eigentler Dundee Modelling dryland vegetation patterns 18



Overview of talk

Motivation, ecological background & a basic phenomenological mathematical model

Nonlocal plant (seed) dispersal
Pattern onset: Analytic derivation in an asymptotic limit
Pattern existence & spectral stability using a numerical continuation method

Species coexistence
Spatial self-organisation as a coexistence mechanism.
Metastable patterns & transient behaviour

Lukas Eigentler Dundee Modelling dryland vegetation patterns 19



Klausmeier Model

The one-species extended Klausmeier reaction-advection-diffusion model.

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

plant dispersal︷︸︸︷
∂2u

∂x2
,

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake
by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

.
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Multispecies Model

Multispecies model:
∂u1
∂t

= wu1 (u1 + Hu2)︸ ︷︷ ︸ − B1u1︸︷︷︸ +
∂2u1
∂x2︸ ︷︷ ︸,

∂u2
∂t

=

plant growth︷ ︸︸ ︷
Fwu2 (u1 + Hu2) −

plant loss︷︸︸︷
B2u2 +

plant dispersal︷ ︸︸ ︷
D
∂2u2
∂x2

,

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− w (u1 + u2) (u1 + Hu2)︸ ︷︷ ︸
water uptake by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

.

Species only differ quantitatively (i.e. in parameter values) but not qualitatively (i.e.
same functional responses). Assume u1 is superior coloniser; u2 is locally superior.
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Multispecies Model

Multispecies model:
∂u1
∂t

= wu1 (u1 + Hu2)

(
1− u1

k1

)
︸ ︷︷ ︸ − B1u1︸︷︷︸ +

∂2u1
∂x2︸ ︷︷ ︸,

∂u2
∂t

=

plant growth︷ ︸︸ ︷
Fwu2 (u1 + Hu2)

(
1− u2

k2

)
−

plant loss︷︸︸︷
B2u2 +

plant dispersal︷ ︸︸ ︷
D
∂2u2
∂x2

,

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− w (u1 + u2) (u1 + Hu2)︸ ︷︷ ︸
water uptake by plants

+ ν
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

.

Intraspecific competition is accounted for.
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Simulations
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Consumer species coexist in a spatially
patterned solution.
Coexistence requires a balance
between species’ local average fitness
and their colonisation abilities.
Solutions are periodic travelling waves
and move in the direction opposite to
the unidirectional resource flux.
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Bifurcation diagram
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Bifurcation diagram: one wavespeed only

The bifurcation structure of
single-species states is identical with
that of single species model.
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Bifurcation diagram
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Bifurcation diagram: one wavespeed only

The bifurcation structure of
single-species states is identical with
that of single species model.
Coexistence pattern solution branch
connects single-species pattern
solution branches.
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Pattern onset
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Essential spectrum in
multispecies model

The key to understand coexistence
pattern onset is knowledge of
single-species pattern’s stability.
Pattern onset occurs as the
single-species pattern loses/gains
stability to the introduction of a
competitor.
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Pattern existence
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B2 − FB1 < 0,F < 1,D < 1

Key quantity: Local average fitness
difference B2 − FB1 determines
stability of single-species states in
spatially uniform setting.
Condition for pattern existence:
Balance between local competitive
and colonisation abilities.
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Pattern existence
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B2 − FB1 ≈ 0,F < 1,D < 1

Key quantity: Local average fitness
difference B2 − FB1 determines
stability of single-species states in
spatially uniform setting.
Condition for pattern existence:
Balance between local competitive
and colonisation abilities.
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Pattern stability
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Stability regions of system states.

Stability regions of patterned solution
can be traced using numerical
continuation.
For decreasing resource input,
coexistence state loses stability to
single-species pattern of coloniser
species.
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Pattern stability
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Stability regions of system states.

Stability regions of patterned solution
can be traced using numerical
continuation.
For decreasing resource input,
coexistence state loses stability to
single-species pattern of coloniser
species.
Bistability of single-species coloniser
pattern and coexistence pattern
occurs.
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Hysteresis
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Wavelength contours of stable patterns

State transitions are affected by hysteresis.
Extinction can occur despite a coexistence
state being stable.
Ecosystem resilience depends on both
current and past states of the system.
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Hysteresis
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Intraspecific competition

weak intraspecific competitionstrong intraspecific competition

Lack of intraspecific competition would lead to (a) non-capture of spatially uniform
coexistence; and (b) overestimation of pattern resilience.
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Metastable coexistence
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Numerical solution of the multi-species model.

Coexistence in the model can
also occur as a metastable
state.
t = 1 corresponds to 3
months

⇒ coexistence of
more than 1000 years.
Coexistence occurs as a long
transient to a one-species
pattern.
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Metastable States

0.2 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.01

-2

0

2
10

-4

Growth rates of perturbations to equilibrium.

Calculation of the growth rate λu of spatially
uniform perturbations to the single-species
equilibria shows

< (λu) = O(B2 − B1F ).

If the average fitness difference
B2 − B1F is small, then coexistence
occurs as a long transient to a stable
one-species state.
Non-spatial property.
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Metastable States
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Growth rates of perturbations to equilibrium.

For sufficiently small levels of precipitation
A < AC

max the growth rate λs of spatially
nonuniform perturbations satisfies

max
k>0
{< (λs(k))} � < (λu)

Pattern formation occurs on a much
shorter timescale.
The predicted wavelength of the
coexistence pattern may differ from
that of a singe-species pattern. ⇒
Change in wavelength occurs during
transient.
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Conclusions II

Spatial self-organisation is a coexistence mechanism10.
Coexistence is enabled by spatial heterogeneities in the resource, caused by the
consumers’ self-organisation into patterns.
A balance between species’ colonisation abilities and local competitiveness promotes
enables coexistence.
Coexistence may occur as a metastable state if the average fitness difference between
species is small11.

10EL and Sherratt, J. A.: J. Theor. Biol. 487 (2020), EL: Oikos 130.4 (2021), EL: Ecol. Complexity
42 (2020).

11EL and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019).
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Future Work

How does nonlocal consumer dispersal affect species coexistence?12

Do results extend to an arbitrary number of species?
How do fluctuations in environmental conditions (in particular resource input) affect
coexistence?
In particular, what are the effects of seasonal13, intermittent14 and probabilistic
resource input regimes on both single-species and multispecies states?

12EL and Sherratt, J. A.: J. Math. Biol. 77.3 (2018).
13EL and Sherratt, J. A.: J. Math. Biol. 81 (2020).
14EL and Sherratt, J. A.: Physica D 405 (2020).
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