Slides are available on my website. http://lukaseigentler.github.io

Modelling dryland vegetation patterns

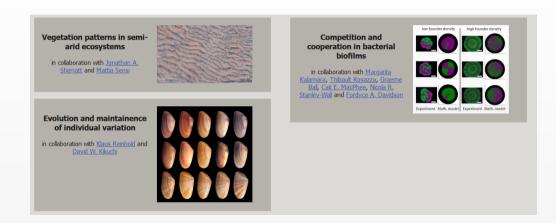
SBIDER seminar

19 February 2023

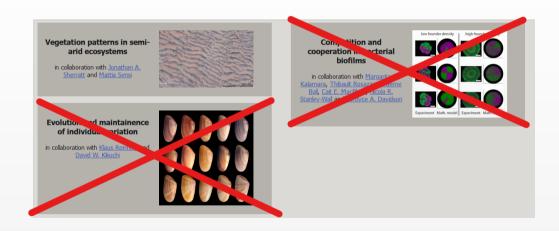
Lukas Eigentler (University of Warwick)

joint work with Jonathan A Sherratt (Heriot-Watt Univ.), Mattia Sensi (Politecnico di Torino)

My research



My research



Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology.

Stripe pattern in Ethiopia¹.

Gap pattern in Niger².

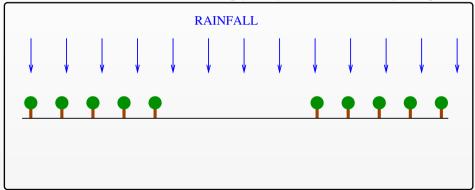
ullet Plants increase water infiltration into the soil \Rightarrow positive feedback loop.

¹Source: Google Maps

²Source: Wikimedia Commons

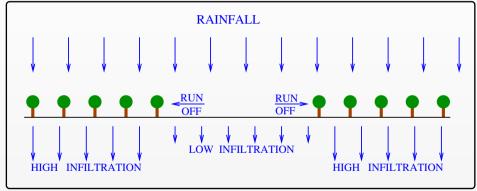
Local facilitation in vegetation patterns

Positive feedback loop: Water infiltration into the soil depends on local plant density \Rightarrow redistribution of water towards existing plant patches \Rightarrow further plant growth.



Local facilitation in vegetation patterns

Positive feedback loop: Water infiltration into the soil depends on local plant density \Rightarrow redistribution of water towards existing plant patches \Rightarrow further plant growth.



Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology.

Stripe pattern in Ethiopia³.

Gap pattern in Niger⁴.

• On sloped ground, stripes grow parallel to the contours.

³Source: Google Maps

⁴Source: Wikimedia Commons

Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.⁵

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}_{\text{plant loss}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{u^2 w}_{\text{water uptake by plants}} + \underbrace{v\frac{\partial w}{\partial x}}_{\text{downhill}} + \underbrace{d\frac{\partial^2 w}{\partial x^2}}_{\text{diffusion}}.$$

⁵Klausmeier, C. A.: *Science* 284.5421 (1999).

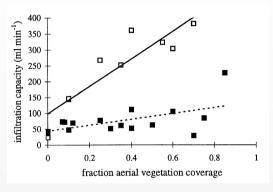
Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}_{\text{plant loss}} - \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{w}_{\text{evaporation}} - \underbrace{u^2 w}_{\text{water uptake by plants}} + \underbrace{\nu \frac{\partial w}{\partial x}}_{\text{water flow downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{water diffusion}}.$$

Water uptake



Infiltration capacity increases with plant density 6

The nonlinearity in the water uptake and plant growth terms arises because plants increase the soil's water infiltration capacity.

 \Rightarrow Water uptake = Water density x plant density x infiltration rate.

⁶Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)

Klausmeier model

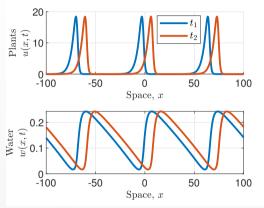
One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.⁷

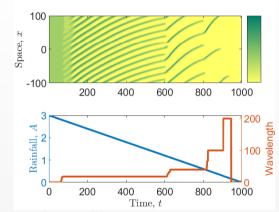
$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}_{\text{plant loss}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall}} - \underbrace{w}_{\text{evaporation}} - \underbrace{u^2 w}_{\text{water uptake}} + \underbrace{v \frac{\partial w}{\partial x}}_{\text{downbill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{water flow}}.$$

⁷Klausmeier, C. A.: *Science* 284.5421 (1999).

Periodic travelling waves

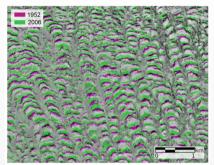




- Model represents vegetation patterns as periodic travelling waves.
- Along rainfall gradient, transition from uniform vegetation to desert occurs via several pattern transitions.

Uphill movement (or not?)

Timeseries data.8



Uphill migration due to water gradient.9

- Contrasting field data: stripes either move uphill (< 1m per year) or are stationary 10 .
- No reports of downhill movement.

⁸Gandhi, P. et al.: *Dryland ecohydrology*. Springer International Publishing, 2019, pp. 469–509.

⁹Dunkerley, D.: *Desert* 23.2 (2018).

¹⁰Deblauwe, V. et al.: *Ecol. Monogr.* 82.1 (2012).

Research question 1

• How can the contrasting field data on uphill movement be explained?

Research question 1

- How does nonlocal seed dispersal affect onset, existence and stability of patterns?
 - ⇒ How can the contrasting field data on uphill movement be explained?

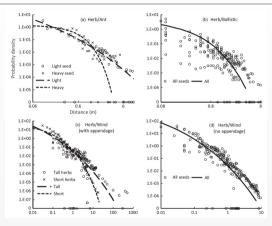
Local Model

The Klausmeier model models plant dispersal by a diffusion term, i.e. a local process.

$$\frac{\partial u}{\partial t} = \overbrace{u^2 w}^{\text{plant growth plant loss}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant growth plant loss}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{w}_{\text{water uptake by plants}} + \underbrace{v \frac{\partial w}{\partial x}}_{\text{water flow downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{water diffusion}}$$

Nonlocal seed dispersal



More realistic: Include effects of nonlocal processes, such as dispersal by wind or large mammals.

Data of long range seed dispersal 11

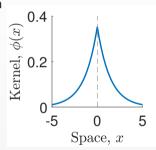
¹¹Bullock, J. M. et al.: *J. Ecol.* 105.1 (2017)

Nonlocal model

Diffusion is replaced by a convolution of the plant density u with a dispersal kernel ϕ . The scale parameter a controls the width of the kernel.

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}^{\text{plant growth}} - \underbrace{Bu}^{\text{plant loss}} + \underbrace{C\left(\phi(\cdot; a) * u(\cdot, t) - u\right)}_{\text{nonlocal plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall}} - \underbrace{w}_{\text{evaporation}} - \underbrace{u^2 w}_{\text{water uptake}} + \underbrace{\nu \frac{\partial w}{\partial x}}_{\text{downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{water downhill}}.$$



Laplacian kernel

If ϕ decays exponentially as $|x| \to \infty$, and $C = 2/\sigma(a)^2$, then the nonlocal model tends to the local model as $\sigma(a) \to 0$.

E.g. Laplace kernel

$$\phi(x) = \frac{a}{2}e^{-a|x|}, \quad a > 0, \quad x \in \mathbb{R}.$$

Useful because

$$\widehat{\phi}(k) = \frac{a^2}{a^2 + k^2}, \quad k \in \mathbb{R}.$$

and allows transformation into a local model. If $v(x,t) = \phi(\cdot;a) * u(\cdot;t)$, then

$$\frac{\partial^2 v}{\partial x^2}(x,t) = a^2(v(x,t) - u(x,t))$$

Pattern onset

Using $\nu\gg 1$, we can analytically calculate the locus of a Hopf bifurcation causing pattern onset and the rainfall level at which pattern onset occurs

$$A_{\text{max}} = \left(\frac{3C - B - 2\sqrt{2C}\sqrt{C - B}}{(B + C)^2}\right)^{\frac{1}{4}} a^{\frac{1}{2}} B^{\frac{5}{4}} \nu^{\frac{1}{2}},$$

valid to leading order in ν as $\nu \to \infty$.

- Decrease in a (i.e. increase in kernel width) causes decrease of A_{max} .
- Decrease in kernel width causes decrease in migration speed (but c does not approach 0).

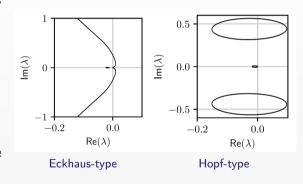
Locus of Hopf bifurcation for fixed C and varying a.¹²

a = 0.3Migration speed, cRainfall parameter, A

¹²EL and Sherratt, J. A.: *J. Math. Biol.* 77.3 (2018)

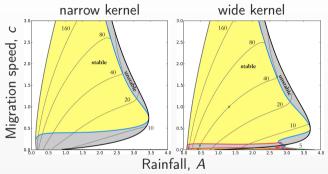
Pattern stability

- The essential spectrum of a periodic travelling wave determines the behaviour of small perturbations. ⇒ Tool to determine pattern stability.
- Two different types stability boundaries: Eckhaus-type and Hopf-type.
- Essential spectra and stability boundaries are calculated using the numerical continuation method by Rademacher et al.¹³



¹³Rademacher, J. D., Sandstede, B. and Scheel, A.: Phys. D 229.2 (2007)

Pattern existence and stability



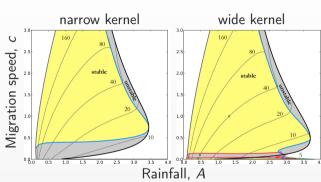
Stability of patterns in the A-c plane. 14

For wide kernels, the stability boundary towards the desert state changes from Eckhaus to Hopf-type. This yields

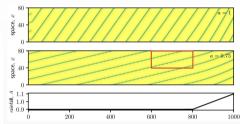
 increased resilience due to oscillating vegetation densities in peaks,

¹⁴Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018)

Pattern existence and stability



Stability of patterns in the A-c plane. 15

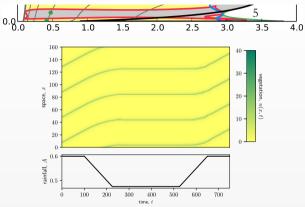


For wide kernels, the stability boundary towards the desert state changes from Eckhaus to Hopf-type. This yields

 increased resilience due to oscillating vegetation densities in peaks,

¹⁵Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018)

Pattern existence and stability



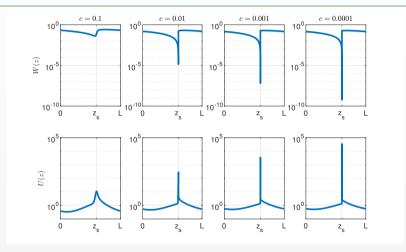
For wide kernels, the stability boundary towards the desert state changes from Eckhaus (sideband) to Hopf-type. This yields

- increased resilience due to oscillating vegetation densities in peaks,
- existence of stable patterns with small migration speed ($c \ll 1$).

Existence of stable (almost) stationary patterns. 16

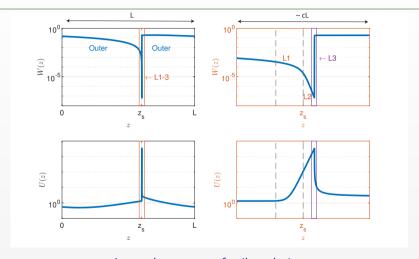
¹⁶Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018)

Almost stationary spike patterns



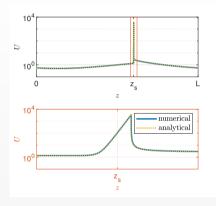
As c decreases, plant density develops a "spike".

Almost stationary spike patterns



Layered structure of spike solution

Almost stationary spike patterns



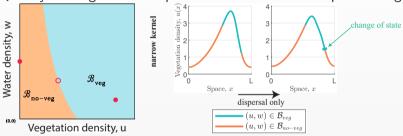
Existence of almost stationary patterns is confirmed analytically using a singular perturbation theory approach, exploiting $c\ll 1$

Analytical calculation of (almost) stationary patterns. ¹⁷

¹⁷EL and Sherratt, J. A.: *J Math Biol* 86.15 (2023)

Almost stationary patters

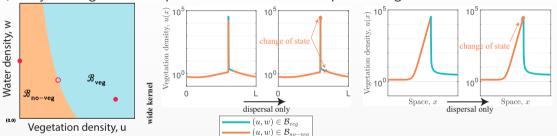
Q: Why do longer mean dispersal distances slow down pattern migration?



• narrow kernel: dispersal-induced plant increase at pattern edge causes transition from basin of attraction of desert state to vegetated state.

Almost stationary patters

Q: Why do longer mean dispersal distances slow down pattern migration?



- Narrow kernel: dispersal-induced plant increase at pattern edge causes transition from basin of attraction of desert state to vegetated state.
- ullet Wide kernel: less dispersal to stripe edges o insufficient to cause transition from basin of attraction of desert state to vegetated state.

Main conclusion

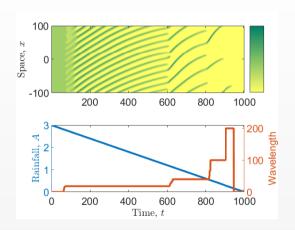
• How can the contrasting field data on uphill movement be explained?

For long seed dispersal distances moving (uphill) and stationary patterns can occur for the same parameter values.

Numerical simulations (pattern onset) and space discretisation to avoid nonlocality (calculation of essential spectra) show no qualitative differences for other kernel functions.

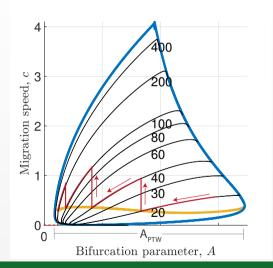
Research question 2

 How do transitions between patterns (= wavelength changes) occur?

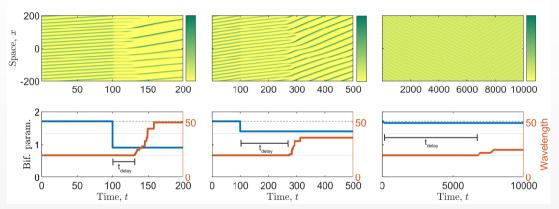


Wavelength changes

- Wavelengths are preserved, provided they remain stable.
- Upon destabilisation at an Eckhaus stability boundary, a wavelength change occurs.

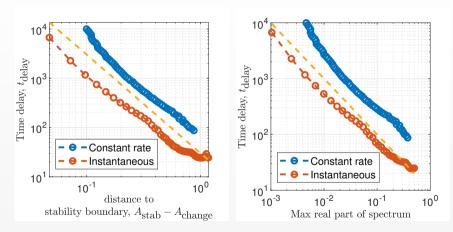


Delays to wavelength changes



Significant delays between crossing a stability boundary and observing wavelength changes occur. Order of magnitude differences in delay depending on parameter values.

Predicting delays



There are clear trends between delay and bifurcation parameter and delay and max real part of the spectrum. no predictive power

Predicting delays

Can predict the order of magnitude of the delay through the accumulated maximal instability¹⁸

$$\overline{\mu}(A(t)) = \int_{t_{\mathsf{stab}}}^t \mu(au) d au, \quad t \geq t_{\mathsf{stab}}.$$

 $t_{\rm stab}$ is the time of the last crossing of the stability boundary.

 $\mu(t)$ is the max real part of the spectrum at time t.

B 0.6 R(X) 1.6 Bifurcation parameter. A $A = A(t) = A_0 - mt$ C 0.6 -0.5 0.5 -0.5 $\Re(\lambda)$ t* 200 150 Time t

¹⁸EL and Sensi, M.: arXiv preprint (2023).

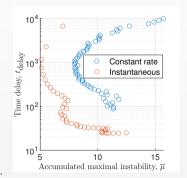
Predicting delays

Can predict the order of magnitude of the delay through the accumulated maximal instability¹⁸

$$\overline{\mu}(A(t)) = \int_{t_{\mathsf{stab}}}^t \mu(au) d au, \quad t \geq t_{\mathsf{stab}}.$$

 $t_{\rm stab}$ is the time of the last crossing of the stability boundary.

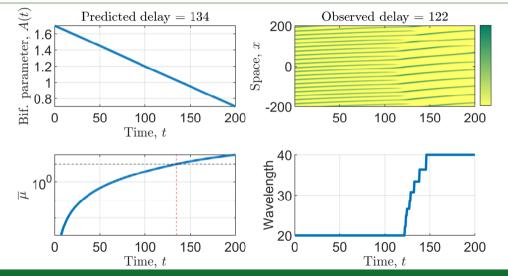
 $\mu(t)$ is the max real part of the spectrum at time t.



Wavelength change occurs when $\overline{\mu} \approx 10$

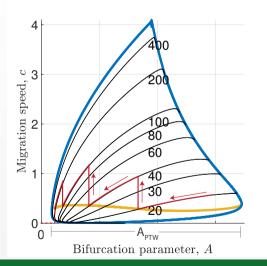
¹⁸EL and Sensi, M.: arXiv preprint (2023).

Delay prediction in practice



Conclusions 2

- Wavelength changes that occur after crossing a stability boundary are subject to a delay.
- Order of magnitude of the delay can be predicted by tracking the maximum real part of the spectrum of the destabilised pattern over time.
- Open question: What new wavelength is chosen?



Research question 3

• How can species coexist despite competition for one limiting resource?

Klausmeier Model

The one-species extended Klausmeier reaction-advection-diffusion model.

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}^{\text{plant growth plant loss}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}^{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{w}_{\text{water uptake by plants}} + \underbrace{v \frac{\partial w}{\partial x}}_{\text{water flow downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{water diffusion}}$$

Multispecies Model

Multispecies model:

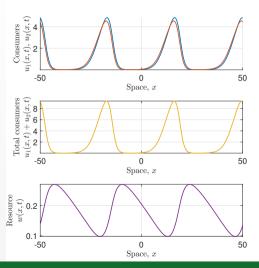
$$\frac{\partial u_1}{\partial t} = \underline{wu_1(u_1 + Hu_2)} - \underline{B_1u_1} + \underbrace{\frac{\partial^2 u_1}{\partial x^2}},$$

$$\frac{\partial u_2}{\partial t} = Fwu_2(u_1 + Hu_2) - \underbrace{B_2u_2} + \underbrace{D\frac{\partial^2 u_2}{\partial x^2}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall}} - \underbrace{w}_{\text{evaporation}} - \underbrace{w(u_1 + u_2)(u_1 + Hu_2)}_{\text{water uptake by plants}} + \underbrace{\nu\frac{\partial w}{\partial x}}_{\text{evapabill}} + \underbrace{d\frac{\partial^2 w}{\partial x^2}}_{\text{water flow}}.$$

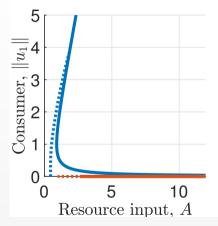
Species only differ quantitatively (i.e. in parameter values) but not qualitatively (i.e. same functional responses). Assume u_1 is superior coloniser; u_2 is locally superior.

Simulations

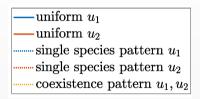


- Consumer species coexist in a spatially patterned solution.
- Coexistence requires a balance between species' local average fitness and their colonisation abilities.
- Solutions are periodic travelling waves and move in the direction opposite to the unidirectional resource flux.

Bifurcation diagram

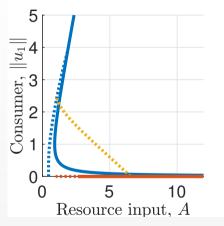


Bifurcation diagram: one wavespeed only

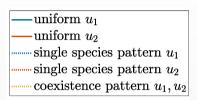


 The bifurcation structure of single-species states is identical with that of single species model.

Bifurcation diagram

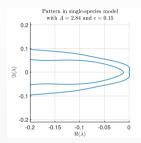


Bifurcation diagram: one wavespeed only

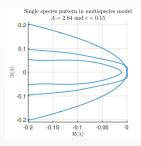


- The bifurcation structure of single-species states is identical with that of single species model.
- Coexistence pattern solution branch connects single-species pattern solution branches.

Pattern onset



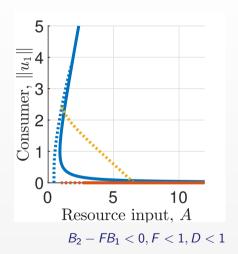
Essential spectrum in single-species model

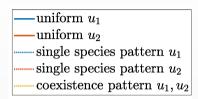


Essential spectrum in multispecies model

- The key to understand coexistence pattern onset is knowledge of single-species pattern's stability.
- Pattern onset occurs as the single-species pattern loses/gains stability to the introduction of a competitor.

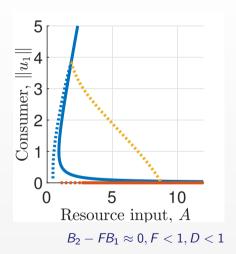
Pattern existence

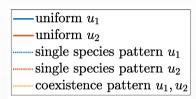




- Key quantity: Local average fitness difference B₂ - FB₁ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence:
 Balance between local competitive and colonisation abilities.

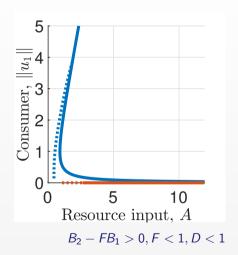
Pattern existence

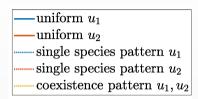




- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence:
 Balance between local competitive and colonisation abilities.

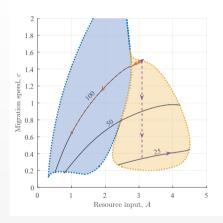
Pattern existence





- Key quantity: Local average fitness difference B₂ - FB₁ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence:
 Balance between local competitive and colonisation abilities.

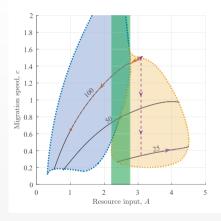
Pattern stability



Stability regions of system states.

- Stability regions of patterned solution can be traced using numerical continuation.
- For decreasing resource input, coexistence state loses stability to single-species pattern of coloniser species.

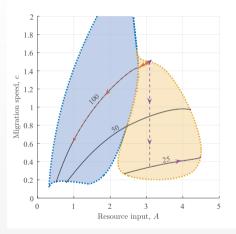
Pattern stability



Stability regions of system states.

- Stability regions of patterned solution can be traced using numerical continuation.
- For decreasing resource input, coexistence state loses stability to single-species pattern of coloniser species.
- Bistability of single-species coloniser pattern and coexistence pattern occurs.

Hysteresis



Wavelength contours of stable patterns

- State transitions are affected by hysteresis.
- Extinction can occur despite a coexistence state being stable.
- Ecosystem resilience depends on both current and past states of the system.

Conclusions II

- Spatial self-organisation is a coexistence mechanism¹⁹.
- Coexistence is enabled by spatial heterogeneities in the resource, caused by the consumers' self-organisation into patterns.
- A balance between species' colonisation abilities and local competitiveness promotes enables coexistence.

¹⁹EL and Sherratt, J. A.: *J. Theor. Biol.* 487 (2020), EL: *Oikos* 130.4 (2021), EL: *Ecol. Complexity* 42 (2020).

References

Slides are available on my website.

http://lukaseigentler.github.io

- [1] Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018), pp. 151–161.
- [2] EL: Ecol. Complexity 42 (2020), p. 100835.
- [3] EL: Oikos 130.4 (2021), pp. 609–623.
- [4] EL and Sensi, M.: arXiv preprint (2023).
- [5] EL and Sherratt, J. A.: J. Math. Biol. 77.3 (2018), pp. 739–763.
- [6] EL and Sherratt, J. A.: J Math Biol 86.15 (2023).
- [7] EL and Sherratt, J. A.: J. Theor. Biol. 487 (2020), p. 110122.