University of Dundee

Modelling dryland vegetation patterns: Nonlocal dispersal and species coexistence Seminar on Analysis and Numerics of PDEs, Innsbruck

16 December 2022

Lukas Eigentler joint work with

Jamie JR Bennett (Icahn School of Medicine), Jonathan A Sherratt (Heriot-Watt Univ.)

Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology.

Stripe pattern in Ethiopia¹.

Gap pattern in Niger².

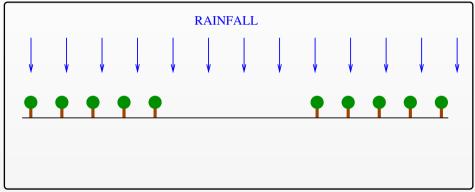
 Plants increase water infiltration into the soil and thus induce a positive feedback loop.

¹Source: Google Maps

²Source: Wikimedia Commons

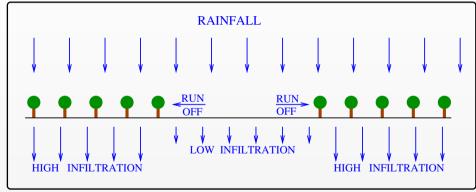
Local facilitation in vegetation patterns

Positive feedback loop: Water infiltration into the soil depends on local plant density \Rightarrow redistribution of water towards existing plant patches \Rightarrow further plant growth.



Local facilitation in vegetation patterns

Positive feedback loop: Water infiltration into the soil depends on local plant density \Rightarrow redistribution of water towards existing plant patches \Rightarrow further plant growth.



Vegetation patterns

Vegetation patterns are a classic example of a self-organisation principle in ecology.

Stripe pattern in Ethiopia³.

Gap pattern in Niger⁴.

 Plants increase water infiltration into the soil and thus induce a positive feedback loop.

³Source: Google Maps

⁴Source: Wikimedia Commons

Vegetation patterns

Uphill migration due to water gradient.⁵

- On sloped ground, stripes grow parallel to the contours.
- Stripes either move uphill or are stationary.
- Species coexistence commonly occurs.

⁵Dunkerley, D.: *Desert* 23.2 (2018).

Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.⁶

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}_{\text{plant loss}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{u^2 w}_{\text{water uptake by plants}} + \underbrace{v\frac{\partial w}{\partial x}}_{\text{downhill}} + \underbrace{d\frac{\partial^2 w}{\partial x^2}}_{\text{diffusion}}.$$

⁶Klausmeier, C. A.: *Science* 284.5421 (1999).

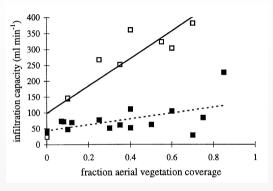
Klausmeier model

One of the most basic phenomenological models is the extended Klausmeier reaction-advection-diffusion model.

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}_{\text{plant loss}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{w}_{\text{water uptake by plants}} + \underbrace{\nu \frac{\partial w}{\partial x}}_{\text{water flow downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{diffusion}}.$$

Water uptake



Infiltration capacity increases with plant $\mbox{density}^{7}$

The nonlinearity in the water uptake and plant growth terms arises because plants increase the soil's water infiltration capacity.

 \Rightarrow Water uptake = Water density \times plant density \times infiltration rate.

⁷Rietkerk, M. et al.: Plant Ecol. 148.2 (2000)

Research questions

- How does nonlocal seed dispersal affect onset, existence and stability of patterns?
- How can species coexist despite competition for one limiting resource?

Research questions

- How does nonlocal seed dispersal affect onset, existence and stability of patterns?
- How can species coexist despite competition for one limiting resource?

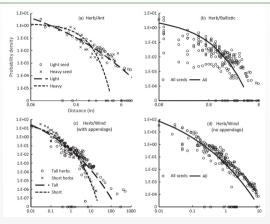
Local Model

The Klausmeier model models plant dispersal by a diffusion term, i.e. a local process.

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}_{\text{plant growth operation}} + \underbrace{\frac{\partial^2 u}{\partial x^2}}_{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall evaporation}} - \underbrace{w}_{\text{water uptake by plants}} + \underbrace{v \frac{\partial w}{\partial x}}_{\text{water flow downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{diffusion}}$$

Nonlocal seed dispersal



More realistic: Include effects of nonlocal processes, such as dispersal by wind or large mammals.

Data of long range seed dispersal ⁸

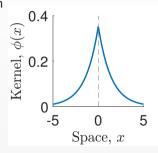
⁸Bullock, J. M. et al.: *J. Ecol.* 105.1 (2017)

Nonlocal model

Diffusion is replaced by a convolution of the plant density u with a dispersal kernel ϕ . The scale parameter a controls the width of the kernel.

$$\frac{\partial u}{\partial t} = \underbrace{u^2 w}^{\text{plant growth}} - \underbrace{Bu}^{\text{plant loss}} + \underbrace{C\left(\phi(\cdot; a) * u(\cdot, t) - u\right)}_{\text{nonlocal plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall}} - \underbrace{w}_{\text{evaporation}} - \underbrace{u^2 w}_{\text{water uptake}} + \underbrace{\nu \frac{\partial w}{\partial x}}_{\text{water flow}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{diffusion}}.$$



Laplacian kernel

If ϕ decays exponentially as $|x| \to \infty$, and $C = 2/\sigma(a)^2$, then the nonlocal model tends to the local model as $\sigma(a) \to 0$.

E.g. Laplace kernel

$$\phi(x) = \frac{a}{2}e^{-a|x|}, \quad a > 0, \quad x \in \mathbb{R}.$$

Useful because

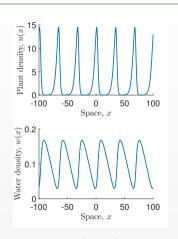
$$\widehat{\phi}(k) = \frac{a^2}{a^2 + k^2}, \quad k \in \mathbb{R}.$$

and allows transformation into a local model. If $v(x,t) = \phi(\cdot;a) * u(\cdot;t)$, then

$$\frac{\partial^2 v}{\partial x^2}(x,t) = a^2(v(x,t) - u(x,t))$$

Travelling waves

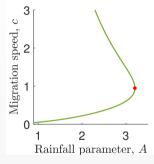
- Numerical simulations of the model on sloped terrain suggest uphill movement ⇒ Periodic travelling waves.
- Patterns correspond to limit cycles of the travelling wave integro-ODEs.



Numerical simulation.

Travelling waves

- Numerical simulations of the model on sloped terrain suggest uphill movement ⇒ Periodic travelling waves.
- Patterns correspond to limit cycles of the travelling wave integro-ODEs.
- Numerical continuation shows that patterns emanate from a Hopf bifurcation and terminate at a homoclinic orbit.
- In the PDE model, pattern onset occurs at a threshold $A = A_{\text{max}}$, the maximum rainfall level of the Hopf bifurcation loci in the travelling wave ODEs.



Location of the Hopf bifurcation in *A-c* plane.

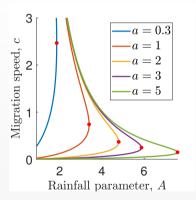
Pattern onset

Using that $\nu\gg 1$,

$$A_{\text{max}} = \left(\frac{3C - B - 2\sqrt{2C}\sqrt{C - B}}{(B + C)^2}\right)^{\frac{1}{4}} a^{\frac{1}{2}} B^{\frac{5}{4}} \nu^{\frac{1}{2}},$$

to leading order in ν as $\nu \to \infty$.

- Note that $A_{\max} = O(\sqrt{\nu})$.
- Decrease in a (i.e. increase in kernel width) causes decrease of A_{max} .
- Increase in dispersal rate C causes decrease of A_{max}.

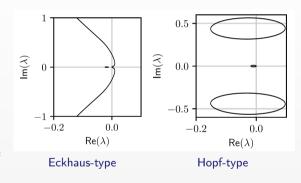


Locus of Hopf bifurcation for fixed C and varying a.

⁹EL and Sherratt, J. A.: J. Math. Biol. 77.3 (2018)

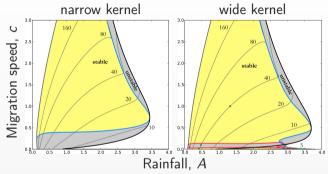
Pattern stability

- The essential spectrum of a periodic travelling wave determines the behaviour of small perturbations. ⇒ Tool to determine pattern stability.
- Two different types stability boundaries: Eckhaus-type and Hopf-type.
- Essential spectra and stability boundaries are calculated using the numerical continuation method by Rademacher et al.¹⁰



¹⁰Rademacher, J. D., Sandstede, B. and Scheel, A.: Physica D 229.2 (2007)

Pattern existence and stability



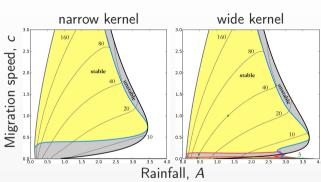
Stability of patterns in the A-c plane. 11

For wide kernels, the stability boundary towards the desert state changes from Eckhaus to Hopf-type. This yields

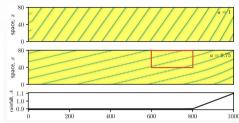
 increased resilience due to oscillating vegetation densities in peaks,

¹¹Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018)

Pattern existence and stability



Stability of patterns in the A-c plane. ¹²

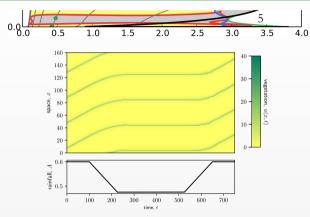


For wide kernels, the stability boundary towards the desert state changes from Eckhaus to Hopf-type. This yields

 increased resilience due to oscillating vegetation densities in peaks,

¹²Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018)

Pattern existence and stability



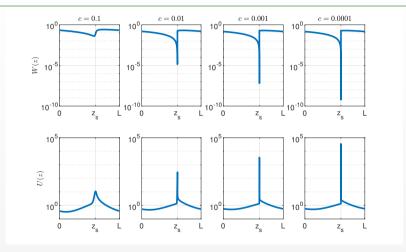
For wide kernels, the stability boundary towards the desert state changes from Eckhaus (sideband) to Hopf-type. This yields

- increased resilience due to oscillating vegetation densities in peaks,
- existence of stable patterns with small migration speed ($c \ll 1$).

Existence of stable (almost) stationary patterns. 13

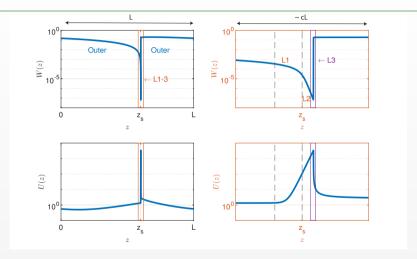
¹³Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018)

Almost stationary spike patterns



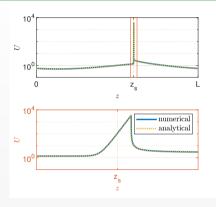
As c decreases, plant density develops a "spike".

Almost stationary spike patterns



Layered structure of spike solution

Almost stationary spike patterns



Existence of almost stationary patterns is confirmed analytically using a singular perturbation theory approach, exploiting $c\ll 1$

Analytical calculation of (almost) stationary patterns. ¹⁴

¹⁴EL and Sherratt, J. A.: J. Math. Biol. (in press)

Conclusions I

- Wider kernels and higher dispersal rates inhibit pattern onset.
- Stability analysis of periodic travelling waves provides ecological insights into pattern dynamics: Long-range seed dispersal increases the resilience of a pattern and stabilises (almost) stationary patterns.
- Numerical simulations (pattern onset) and space discretisation to avoid nonlocality (calculation of essential spectra) show no qualitative differences for other kernel functions.

Research questions

- How does nonlocal seed dispersal affect onset, existence and stability of patterns?
- How can species coexist despite competition for one limiting resource?

Klausmeier Model

The one-species extended Klausmeier reaction-advection-diffusion model.

$$\frac{\partial u}{\partial t} = \overbrace{u^2 w}^{\text{plant growth}} - \overbrace{Bu}^{\text{plant loss}} + \overbrace{\frac{\partial^2 u}{\partial x^2}}^{\text{plant dispersal}},$$

$$\frac{\partial w}{\partial t} = \underbrace{A}_{\text{rainfall}} - \underbrace{w}_{\text{evaporation}} - \underbrace{u^2 w}_{\text{water uptake}} + \underbrace{\nu \frac{\partial w}{\partial x}}_{\text{water flow downhill}} + \underbrace{d \frac{\partial^2 w}{\partial x^2}}_{\text{diffusion}}$$

Multispecies Model

Multispecies model:

$$\frac{\partial u_1}{\partial t} = wu_1 (u_1 + Hu_2) - B_1 u_1 + \frac{\partial^2 u_1}{\partial x^2},$$

$$\frac{\partial u_2}{\partial t} = Fwu_2 (u_1 + Hu_2) - B_2 u_2 + D\frac{\partial^2 u_2}{\partial x^2},$$

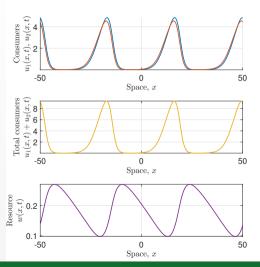
$$\frac{\partial w}{\partial t} = A - w - w (u_1 + u_2) (u_1 + Hu_2) + v\frac{\partial w}{\partial x} + d\frac{\partial^2 w}{\partial x^2}.$$

$$\frac{\partial w}{\partial t} = A - w - w (u_1 + u_2) (u_1 + Hu_2) + v\frac{\partial w}{\partial x} + d\frac{\partial^2 w}{\partial x^2}.$$

$$\frac{\partial w}{\partial t} = A - w - w (u_1 + u_2) (u_1 + Hu_2) + v\frac{\partial w}{\partial x} + d\frac{\partial^2 w}{\partial x^2}.$$

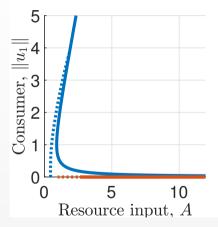
Species only differ quantitatively (i.e. in parameter values) but not qualitatively (i.e. same functional responses). Assume u_1 is superior coloniser; u_2 is locally superior.

Simulations

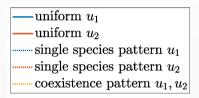


- Consumer species coexist in a spatially patterned solution.
- Coexistence requires a balance between species' local average fitness and their colonisation abilities.
- Solutions are periodic travelling waves and move in the direction opposite to the unidirectional resource flux.

Bifurcation diagram

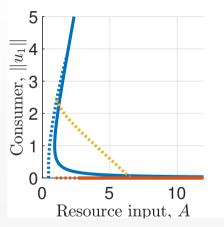


Bifurcation diagram: one wavespeed only

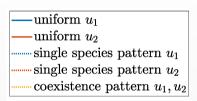


 The bifurcation structure of single-species states is identical with that of single species model.

Bifurcation diagram

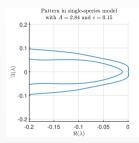


Bifurcation diagram: one wavespeed only

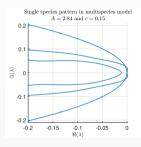


- The bifurcation structure of single-species states is identical with that of single species model.
- Coexistence pattern solution branch connects single-species pattern solution branches.

Pattern onset



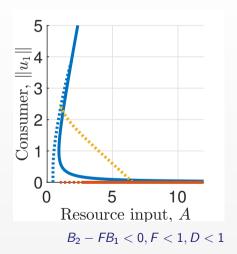
Essential spectrum in single-species model

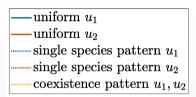


Essential spectrum in multispecies model

- The key to understand coexistence pattern onset is knowledge of single-species pattern's stability.
- Pattern onset occurs as the single-species pattern loses/gains stability to the introduction of a competitor.

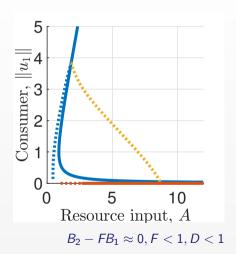
Pattern existence





- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence:
 Balance between local competitive and colonisation abilities.

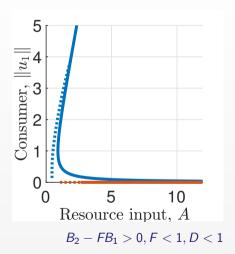
Pattern existence

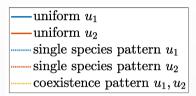


-uniform u_1 -uniform u_2 -single species pattern u_1 -coexistence pattern u_1, u_2

- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence:
 Balance between local competitive and colonisation abilities.

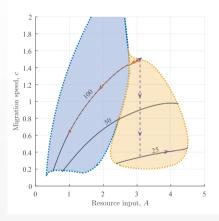
Pattern existence





- Key quantity: Local average fitness difference $B_2 FB_1$ determines stability of single-species states in spatially uniform setting.
- Condition for pattern existence:
 Balance between local competitive and colonisation abilities.

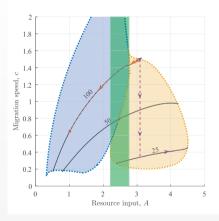
Pattern stability



Stability regions of system states.

- Stability regions of patterned solution can be traced using numerical continuation.
- For decreasing resource input, coexistence state loses stability to single-species pattern of coloniser species.

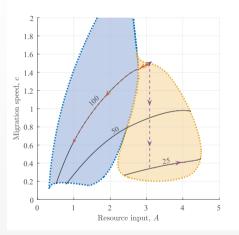
Pattern stability



Stability regions of system states.

- Stability regions of patterned solution can be traced using numerical continuation.
- For decreasing resource input, coexistence state loses stability to single-species pattern of coloniser species.
- Bistability of single-species coloniser pattern and coexistence pattern occurs.

Hysteresis



Wavelength contours of stable patterns

- State transitions are affected by hysteresis.
- Extinction can occur despite a coexistence state being stable.
- Ecosystem resilience depends on both current and past states of the system.

Conclusions II

- Spatial self-organisation is a coexistence mechanism¹⁵.
- Coexistence is enabled by spatial heterogeneities in the resource, caused by the consumers' self-organisation into patterns.
- A balance between species' colonisation abilities and local competitiveness promotes enables coexistence.
- Coexistence may occur as a metastable state if the average fitness difference between species is small¹⁶.

¹⁵EL and Sherratt, J. A.: *J. Theor. Biol.* 487 (2020), EL: *Oikos* 130.4 (2021), EL: *Ecol. Complexity* 42 (2020).

¹⁶EL and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019).

Future Work

- How does nonlocal consumer dispersal affect species coexistence?¹⁷
- Do results extend to an arbitrary number of species?
- How do fluctuations in environmental conditions (in particular resource input) affect coexistence?
- In particular, what are the effects of seasonal¹⁸, intermittent¹⁹ and probabilistic resource input regimes on both single-species and multispecies states?

¹⁷EL and Sherratt, J. A.: *J. Math. Biol.* 77.3 (2018).

¹⁸EL and Sherratt, J. A.: *J. Math. Biol.* 81 (2020).

¹⁹EL and Sherratt, J. A.: *Physica D* 405 (2020).

References

Slides are available on my website.

http://lukaseigentler.github.io

- [1] Bennett, J. J. R. and Sherratt, J. A.: J. Theor. Biol. 481 (2018), pp. 151–161.
- [2] Eigentler, L.: Oikos 130.4 (2021), pp. 609–623.
- [3] Eigentler, L.: Ecol. Complexity 42 (2020), p. 100835.
- [4] Eigentler, L. and Sherratt, J. A.: J. Math. Biol. 77.3 (2018), pp. 739–763.
- [5] Eigentler, L. and Sherratt, J. A.: J. Math. Biol. (in press).
- [6] Eigentler, L. and Sherratt, J. A.: Bull. Math. Biol. 81.7 (2019), pp. 2290–2322.
- [7] Eigentler, L. and Sherratt, J. A.: J. Theor. Biol. 487 (2020), p. 110122.