#### University of Dundee

Competition and coexistence in bacterial range expansion: the role of founder cells and spatial heterogeneities

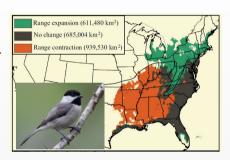
Bielefeld Evolution Seminar

23/08/2022

Lukas Eigentler

#### Range expansion

- Range expansion refers to the spread of a population into previously unoccupied habitats.
- Occurs in early evolutionary history of species, but is also induced by climate change because habitable environments shift polewards (or to higher altitudes).
- Examples include ecological invasions, spread of epidemics, human migration, growth of microbial populations, ...

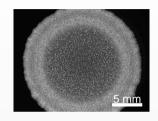


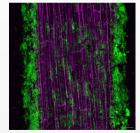
Range expansion of Carolina chickadee (*Poecile carolinensis*)<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>McQuillan, M. A. and Rice, A. M.: Ecology and Evolution 5.21 (2015)

#### **Biofilms**

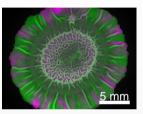
- Bacterial biofilms are surface-adhering multicellular collectives embedded in a self-produced extracellular matrix.
- Biofilms can have both beneficial and detrimental effects on the surrounding environment.
- Example: the soil-dwelling bacterium *Bacillus subtilis* forms biofilms on the roots of plants, where some strains promote the growth of plants.
- To fully realise their potential as biocontrol agents, strains need to be capable of coexisting with (or outcompeting) other biofilm-forming strains in the rhizosphere.

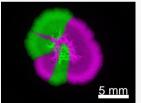




### Competition within biofilms

- Competition in biofilms is underpinned by kin discrimination.
- Many mechanisms of kin discrimination require spatial co-location of strains.
- Take a step back: need to understand the role of spatial structure first.

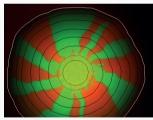




### Colony biofilms

Spatial structure in biofilms is typically studied through the colony biofilm model<sup>a</sup>:

• Genetic drift induces spatial segregation.<sup>b</sup>



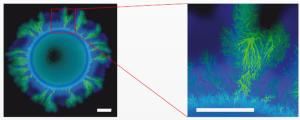
<sup>&</sup>lt;sup>a</sup>Eigentler, L. et al.: (submitted).

<sup>&</sup>lt;sup>b</sup>Hallatschek, O. et al.: *PNAS* 104.50 (2007).

### Colony biofilms

Spatial structure in biofilms is typically studied through the colony biofilm model<sup>a</sup>:

• Syntrophic relationships induce dendritic patterns.<sup>b</sup>



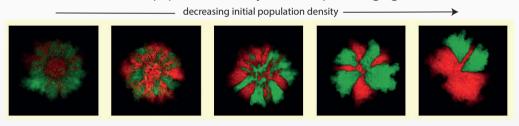
<sup>&</sup>lt;sup>a</sup>Eigentler, L. et al.: (submitted).

<sup>&</sup>lt;sup>b</sup>Goldschmidt, F. et al.: The ISME Journal 11.9 (2017).

### Colony biofilms

Spatial structure in biofilms is typically studied through the colony biofilm model<sup>a</sup>:

• Reduction in initial population density induces spatial segregation.<sup>b</sup>

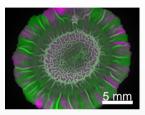


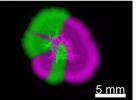
<sup>&</sup>lt;sup>a</sup>Eigentler, L. et al.: (submitted).

<sup>&</sup>lt;sup>b</sup>van Gestel, J. et al.: *ISME J.* 8.10 (2014).

### Competition within biofilms

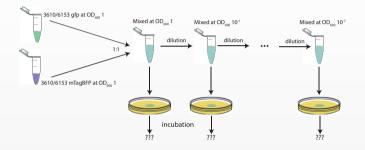
- Questions: How does spatial structure arise in biofilms with low initial population density and how does it affect competitive interactions?
- Spatial structure is best studied using isogenic strains: all other competitive mechanisms (e.g. kin discrimination) are excluded from the model system by design.
- → Then extend to strain combinations with antagonistic interactions.





#### Methods

#### Experimental assay:



#### Tested for

- B. subtilis NCIB3610 ("standard" lab strain).
- B. subtilis NRS6153 (isolated from garden soil in Tayport, Fife, UK).

#### Methods

Mathematical model for isogenic strain pair:

$$\frac{\partial B_1}{\partial t} = \nabla \cdot ((1 - (B_1 + B_2)) \nabla B_1) + B_1 (1 - (B_1 + B_2)),$$

$$\frac{\partial B_2}{\partial t} = \nabla \cdot ((1 - (B_1 + B_2)) \nabla B_2) + B_2 (1 - (B_1 + B_2)).$$

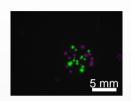
- Circular domain  $\Omega = \{x \in \mathbb{R}^2 : ||x|| \le R\}.$
- Logistic growth
- Diffusion with density-dependent diffusion coefficient, motivated by experimental observation that initially separated colonies abut rather than merge<sup>2</sup>.

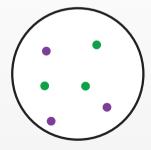


<sup>&</sup>lt;sup>2</sup>Matoz-Fernandez, D. et al.: Soft Matter 16.13 (2020)

#### Initial conditions

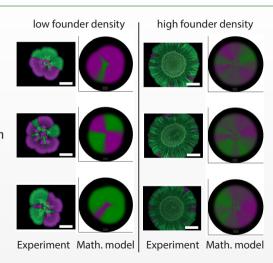
- What are appropriate initial conditions?
- In experiments, cells settle at random locations within the initial spot and grow to small micro-colonies.
- In the model, we position initial "cell patches" at random locations in the domain centre  $\Omega_0 = \{x \in \mathbb{R}^2 : ||x|| \le R_0\} \subset \Omega$ .
- Each model patch represents 1 microcolony ⇒ tool to modulate founder density.





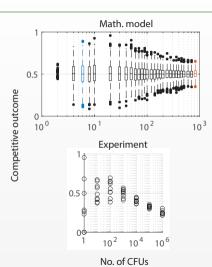
#### Variability in competitive outcome

- High founder density: no spatial structure and initial strain ratio consistently determines competitive outcome.
- Low founder density: spatial segregation occurs. Large variability in competitive outcome for fixed initial strain ratio.
- Founder density significantly affects phenotype and variability in competitive outcome.



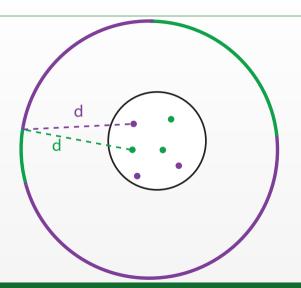
### Variability in competitive outcome

- Founder density significantly affects phenotype and variability in competitive outcome.
- Variability increases with decreasing founder density.
- Note the computational power of the mathematical model: 1000 model simulations each vs 12 technical replicates each of experimental assay.



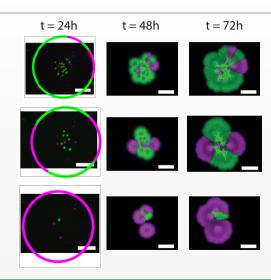
### Disentangling variability

- Hypothesis: only initial patches that can drive the biofilm's radial expansion contribute to outcome density.
- We define a quantity that, based on the initial cell locations, measures a strain's "access to free space"



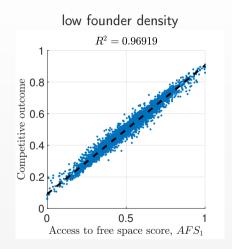
### Disentangling variability

- Hypothesis: only initial patches that can drive the biofilm's radial expansion contribute to outcome density.
- We define a quantity that, based on the initial cell locations, measures a strain's "access to free space"



### Access to free space predicts outcome

 Access to free space determines competitive outcome in the absence of any other competitive dynamics (isogenic strains).



## Access to free space predicts outcome

- Access to free space determines competitive outcome in the absence of any other competitive dynamics (isogenic strains).
- Slope of relation between access to free space and competitive outcome depends on founder density.

# high founder density $R^2 = 0.55095$ 0.8 Competitive outcome 0.6 0.4 0.2 0.5

Access to free space score,  $AFS_1$ 

#### Non-isogenic strains

• Do these results also hold if strains are non-isogenic and interact through local antagonisms?

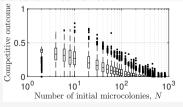
$$\frac{\partial B_1}{\partial t} = \nabla \cdot \left( \left( 1 - \frac{B_1 + B_2}{k} \right) \nabla B_1 \right) + B_1 \left( 1 - \frac{B_1 + B_2}{k} \right) - B_1 B_2,$$

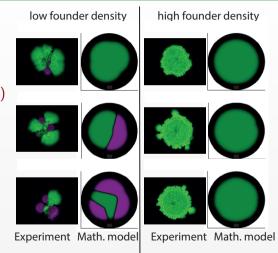
$$\frac{\partial B_2}{\partial t} = \nabla \cdot \left( d \left( 1 - \frac{B_1 + B_2}{k} \right) \nabla B_2 \right) + r B_2 \left( 1 - \frac{B_1 + B_2}{k} \right) - c B_2 B_1.$$

Nondimensional model, i.e. d, r, c are ratios of corresponding dimensional parameters.

#### Non-isogenic strains

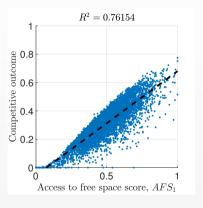
- High founder density: competitive exclusion.
- Low founder density: spatial segregation enables coexistence.
- Decreases in founder density cause (i) increased variability in competitive outcome, (ii) higher (on average) densities of weaker strain.





### Access to free space predicts outcome

- Access to free space remains a reliable predictor of competitive outcome for low founder densities.
- Competition for space is the dominant mode of interaction for low founder densities.

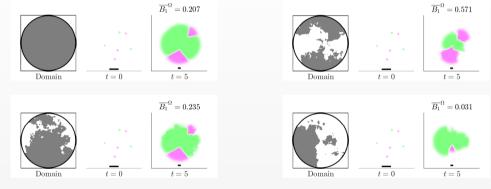


Q: What if environmental conditions are spatially heterogeneous?

$$\frac{\partial B_1}{\partial t} = \nabla \cdot \left( \mathbf{d_1}(\mathbf{x}) \left( 1 - \frac{B_1 + B_2}{k} \right) \nabla B_1 \right) + \mathbf{r_1}(\mathbf{x}) B_1 \left( 1 - \frac{B_1 + B_2}{k} \right) - c_{12} B_1 B_2,$$

$$\frac{\partial B_2}{\partial t} = \nabla \cdot \left( \mathbf{d_2}(\mathbf{x}) \left( 1 - \frac{B_1 + B_2}{k} \right) \nabla B_2 \right) + \mathbf{r_2}(\mathbf{x}) B_2 \left( 1 - \frac{B_1 + B_2}{k} \right) - c_{21} B_1 B_2.$$

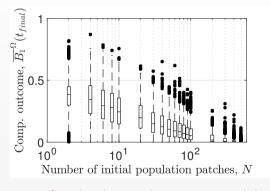
Q: What if environmental conditions are spatially heterogeneous?

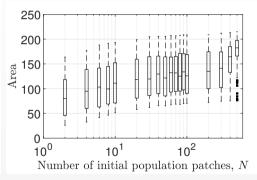


A: Spatial heterogeneity adds more variability  $\Rightarrow$  Access to free space score cannot make accurate predictions.

Q: Which source of variability (low founder density or spatial heterogeneous environmental conditions) dominates?

Q: Which source of variability (low founder density or spatial heterogeneous environmental conditions) dominates?





A: Low founder density determines variability in competitive outcome but spatial heterogeneities determine variability in footprint.

Q: Can we still make predictions of competitive outcome?

Q: Can we still make predictions of competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.

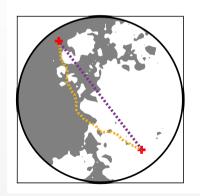






Q: Can we still make predictions of competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.



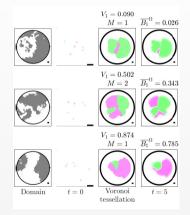


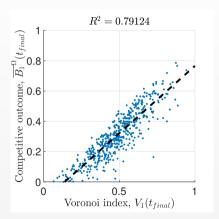




Q: Can we still make predictions for competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.





#### Conclusions

- Large variability in competitive outcome occurs for biofilms inoculated at low founder density, induced by the random positions of founder cells within the inoculum.
- Large variability in biofilm footprint occurs in spatially heterogeneous environments.
- Competitive outcome can be predicted based on founder cell locations and information on the spatial environment.
- Predictions hold true even if kin discrimination occurs ⇒ "Race for space" is more important than antagonistic actions at low founder densities.
- Impact on applications (e.g. use of B. subtilis as biofertilizer): Competitive success across all founder densities can only be guaranteed if a strain spreads fast and kills efficiently.

#### Acknowledgements

#### Collaborators:

- Margarita Kalamara (Univ. of Dundee)
- Graeme Ball (Univ. of Dundee)
- Cait E. MacPhee (Univ. of Edinburgh)
- Nicola R. Stanley-Wall (Univ. of Dundee)
- Fordyce A. Davidson (Univ. of Dundee)

#### Funding:





#### Other Stanley-Wall lab members:

- Sofia Arnaouteli
- Natalie Bamford
- Alistair Bonsall
- Joana Moreira Carneiro
- Thibault Rosazza
- David Stevenson
- Tetyana Sukhodub

#### References

Slides are available on my website. http://lukaseigentler.github.io

- [1] Eigentler, L., Stanley-Wall, N. R. and Davidson, F. A.: 'A theoretical framework for multi-species range expansion in spatially heterogeneous landscapes'. *Oikos* 2022.8 (2022), e09077.
- [2] Eigentler, L., Kalamara, M., Ball, G., MacPhee, C. E., Stanley-Wall, N. R. and Davidson, F. A.: 'Founder cell configuration drives competitive outcome within colony biofilms'. *ISME J* 16.6 (2022), pp. 1512–1522.
- [3] Eigentler, L., Davidson, F. A. and Stanley-Wall, N. R.: 'Mechanisms driving spatial distribution of residents in colony biofilms: an interdisciplinary perspective'. (Submitted).

Additional slides

Q: Can we still make predictions for competitive outcome?

Q: Can we still make predictions for competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.

Let  $\mathcal{P}(\mathsf{x},\mathsf{y}) := \{P = p([0,1]) \subset \Omega, \text{ where } p : [0,1] \to \Omega : p \in \mathcal{C}^1 \text{a.e.}, p(0) = \mathsf{x}, p(1) = \mathsf{y}\}$  be the set of all paths from  $\mathsf{x}$  to  $\mathsf{y}$ . For a given path  $P \in \mathcal{P}(\mathsf{x},\mathsf{y})$ , the time taken to move along the path is given by

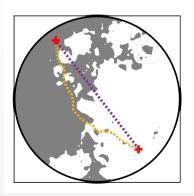
$$I(P) := \int_P \frac{1}{c(\mathsf{x})} \mathsf{d}s = \int_0^1 \frac{1}{c(\rho(\tau))} \|\rho'(\tau)\| \mathsf{d}\tau,$$

where  $0 \le c(x) < \infty$  represents the propagation speed along the path P. We define the front propagation metric from x to y as

$$t_{\mathsf{FP}}(\mathsf{x},\mathsf{y}) := \inf_{P \in \mathcal{P}(\mathsf{x},\mathsf{y})} I(P).$$

Q: Can we still make predictions of competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.



Q: Can we still make predictions for competitive outcome?

A: Yes, using Voronoi tessellations based on an appropriate metric.

Voronoi tessellation of whole domain:

$$\Delta_{\mathcal{B}_i}^{\Omega} := \left\{ \mathsf{x} \in \Omega : \min_{\mathsf{x}_i \in \mathcal{B}_i} t_{\mathsf{FP}}(\mathsf{x}, \mathsf{x}_i) \leq \min_{\mathsf{x}_j \in \mathcal{B}_j} t_{\mathsf{FP}}(\mathsf{x}, \mathsf{x}_j), i \neq j \right\},\,$$

where  $\mathcal{B}_i := \{x \in \{x_1, \dots x_N\} : B_i(x, 0) > 0\}, i = 1, 2.$ 

Restrict to area expected to be occupied by time t:

$$\Delta_{\mathcal{B}_i}(t) := \left\{ \mathsf{x} \in \Delta_{\mathcal{B}_i}^\Omega : \min_{\mathsf{y} \in \mathcal{B}_i} t_{\mathsf{FP}}(\mathsf{x},\mathsf{y}) \leq t 
ight\}, \quad i = 1, 2.$$

Voronoi index:

$$V_i(t) := rac{\mathsf{Area}\left(\Delta_{B_i}(t)
ight)}{\mathsf{Area}\left(\Delta_{B_1}(t)
ight) + \mathsf{Area}\left(\Delta_{B_2}(t)
ight)}, \quad i = 1, 2,$$





